Coronary artery disease remains a major cause of mortality. Presence of atherosclerotic plaques in the coronary artery is responsible for lu-men stenosis which is often used as an indicator for determining the severit...Coronary artery disease remains a major cause of mortality. Presence of atherosclerotic plaques in the coronary artery is responsible for lu-men stenosis which is often used as an indicator for determining the severity of coronary artery disease. However, the degree of coronary lumen stenosis is not often related to compromising myocardial blood flow, as most of the cardiac events that are caused by atherosclerotic plaques are the result of vulnerable plaques which are prone to rupture. Thus, identification of vulnerable plaques in coronary arteries has become increas-ingly important to assist identify patients with high cardiovascular risks. Molecular imaging with use of positron emission tomography (PET) and single photon emission computed tomography (SPECT) has fulfilled this goal by providing functional information about plaque activity which enables accurate assessment of plaque stability. This review article provides an overview of diagnostic applications of molecular imaging tech-niques in the detection of plaques in coronary arteries with PET and SPECT. New radiopharmaceuticals used in the molecular imaging of coro-nary plaques and diagnostic applications of integrated PET/CT and PET/MRI in coronary plaques are also discussed.展开更多
AIM: To assess the attenuation of non-calcified atherosclerotic coronary artery plaques with computed tomography coronary angiography (CTCA). METHODS: Four hundred consecutive patients underwent CTCA (Group 1: 200 pat...AIM: To assess the attenuation of non-calcified atherosclerotic coronary artery plaques with computed tomography coronary angiography (CTCA). METHODS: Four hundred consecutive patients underwent CTCA (Group 1: 200 patients, Sensation 64 Cardiac, Siemens; Group 2: 200 patients, VCT GE Healthcare, with either Iomeprol 400 or Iodixanol 320, respectively) for suspected coronary artery disease (CAD). CTCA was performed using standard protocols. Image quality (score 0-3), plaque (within the accessible non-calcified component of each non-calcified/mixed plaque) and coronary lumen attenuation were measured. Data were compared on a per-segment/per-plaque basis. Plaques were classified as fibrous vs lipid rich based on different attenuation thresholds. A P < 0.05 was considered significant. RESULTS: In 468 atherosclerotic plaques in Group 1 and 644 in Group 2, average image quality was 2.96 ± 0.19 in Group 1 and 2.93 ± 0.25 in Group 2 (P ≥ 0.05). Coronary lumen attenuation was 367 ± 85 Hounsfield units (HU) in Group 1 and 327 ± 73 HU in Group 2 (P < 0.05); non-calcified plaque attenuation was 48 ± 23 HU in Group 1 and 39 ± 21 HU in Group 2 (P < 0.05). Overall signal to noise ratio was 15.6 ± 4.7 in Group 1 and 21.2 ± 7.7 in Group 2 (P < 0.01). CONCLUSION: Higher intra-vascular attenuation modifies significantly the attenuation of non-calcified coronary plaques. This results in a more difficult characterization between lipid rich vs fibrous type.展开更多
Objective To evaluate the predictive value of atherosclerotic aortic plaques in coronary artery disease (CAD). Methods In 50 patients with suspected coronary artery disease, transesophageal echocardiography was perfor...Objective To evaluate the predictive value of atherosclerotic aortic plaques in coronary artery disease (CAD). Methods In 50 patients with suspected coronary artery disease, transesophageal echocardiography was performed to examine their thoracic aortas 2 weeks before or after coronary angiography. In the cases of coronary angiography studied, stenosis of the coronary artery ≥50%was considered to be due to coronary artery disease, whereas the thickness of the intima ≥1.3 mm was taken to be the criteria for the presence of an atherosclerotic aortic plaque on the transesophageal echocardiographic test. Results Among the 50 patients, 37 cases were diagnosed as CAD and 13 cases were considered to be normal. The plaques of the thoracic aorta were observed in 34 cases in the CAD group and 3 cases in the normal group. The sensitivity and specificity of aortic plaques for CAD were 91.9%and 76.9%, respectively. The positive and negative predictive values of the aortic plaques for CAD were 91.9%and 76.9%, respectively. The accuracy was 88.0%. 80 percent of the patients with single-vessel disease had thoracic aortic plaques, 92 percent of the patients with two vessel disease and 100 percent of the patients with three vessel disease had thoracic aortic plaques. There was a significant difference in the thickness of aortic intimas between the normal group and the CAD group. Conclusions Detecting atherosclerotic plaques in the thoracic aorta with transesophageal echocardiography may be of great value in predicting the presence and extent of coronary artery disease.展开更多
文摘Coronary artery disease remains a major cause of mortality. Presence of atherosclerotic plaques in the coronary artery is responsible for lu-men stenosis which is often used as an indicator for determining the severity of coronary artery disease. However, the degree of coronary lumen stenosis is not often related to compromising myocardial blood flow, as most of the cardiac events that are caused by atherosclerotic plaques are the result of vulnerable plaques which are prone to rupture. Thus, identification of vulnerable plaques in coronary arteries has become increas-ingly important to assist identify patients with high cardiovascular risks. Molecular imaging with use of positron emission tomography (PET) and single photon emission computed tomography (SPECT) has fulfilled this goal by providing functional information about plaque activity which enables accurate assessment of plaque stability. This review article provides an overview of diagnostic applications of molecular imaging tech-niques in the detection of plaques in coronary arteries with PET and SPECT. New radiopharmaceuticals used in the molecular imaging of coro-nary plaques and diagnostic applications of integrated PET/CT and PET/MRI in coronary plaques are also discussed.
基金Supported by An unrestricted grant from GE Healthcare
文摘AIM: To assess the attenuation of non-calcified atherosclerotic coronary artery plaques with computed tomography coronary angiography (CTCA). METHODS: Four hundred consecutive patients underwent CTCA (Group 1: 200 patients, Sensation 64 Cardiac, Siemens; Group 2: 200 patients, VCT GE Healthcare, with either Iomeprol 400 or Iodixanol 320, respectively) for suspected coronary artery disease (CAD). CTCA was performed using standard protocols. Image quality (score 0-3), plaque (within the accessible non-calcified component of each non-calcified/mixed plaque) and coronary lumen attenuation were measured. Data were compared on a per-segment/per-plaque basis. Plaques were classified as fibrous vs lipid rich based on different attenuation thresholds. A P < 0.05 was considered significant. RESULTS: In 468 atherosclerotic plaques in Group 1 and 644 in Group 2, average image quality was 2.96 ± 0.19 in Group 1 and 2.93 ± 0.25 in Group 2 (P ≥ 0.05). Coronary lumen attenuation was 367 ± 85 Hounsfield units (HU) in Group 1 and 327 ± 73 HU in Group 2 (P < 0.05); non-calcified plaque attenuation was 48 ± 23 HU in Group 1 and 39 ± 21 HU in Group 2 (P < 0.05). Overall signal to noise ratio was 15.6 ± 4.7 in Group 1 and 21.2 ± 7.7 in Group 2 (P < 0.01). CONCLUSION: Higher intra-vascular attenuation modifies significantly the attenuation of non-calcified coronary plaques. This results in a more difficult characterization between lipid rich vs fibrous type.
文摘Objective To evaluate the predictive value of atherosclerotic aortic plaques in coronary artery disease (CAD). Methods In 50 patients with suspected coronary artery disease, transesophageal echocardiography was performed to examine their thoracic aortas 2 weeks before or after coronary angiography. In the cases of coronary angiography studied, stenosis of the coronary artery ≥50%was considered to be due to coronary artery disease, whereas the thickness of the intima ≥1.3 mm was taken to be the criteria for the presence of an atherosclerotic aortic plaque on the transesophageal echocardiographic test. Results Among the 50 patients, 37 cases were diagnosed as CAD and 13 cases were considered to be normal. The plaques of the thoracic aorta were observed in 34 cases in the CAD group and 3 cases in the normal group. The sensitivity and specificity of aortic plaques for CAD were 91.9%and 76.9%, respectively. The positive and negative predictive values of the aortic plaques for CAD were 91.9%and 76.9%, respectively. The accuracy was 88.0%. 80 percent of the patients with single-vessel disease had thoracic aortic plaques, 92 percent of the patients with two vessel disease and 100 percent of the patients with three vessel disease had thoracic aortic plaques. There was a significant difference in the thickness of aortic intimas between the normal group and the CAD group. Conclusions Detecting atherosclerotic plaques in the thoracic aorta with transesophageal echocardiography may be of great value in predicting the presence and extent of coronary artery disease.