Shipboard radiosonde soundings are important for detecting and quantifying the multiscale variability of atmosphere-ocean interactions associated with mass exchanges.This study evaluated the accuracies of shipboard Gl...Shipboard radiosonde soundings are important for detecting and quantifying the multiscale variability of atmosphere-ocean interactions associated with mass exchanges.This study evaluated the accuracies of shipboard Global Positioning System(GPS)soundings in the eastern tropical Indian Ocean and South China Sea through a simultaneous balloon-borne inter-comparison of different radiosonde types.Our results indicate that the temperature and relative humidity(RH)measurements of GPS-TanKong(GPS-TK)radiosonde(used at most stations before 2012)have larger biases than those of ChangFeng-06-A(CF-06-A)radiosonde(widely used in current observation)when compared to reference data from Vaisala RS92-SGP radiosonde,with a warm bias of 5℃and dry bias of 10%during daytimes,and a cooling bias of-0.8℃and a moist bias of 6%during nighttime.These systematic biases are primarily attributed to the radiation effects and altitude deviation.An empirical correction algorithm was developed to retrieve the atmospheric temperature and RH profiles.The corrected profiles agree well with that of RS92-SGP,except for uncertainties of CF-06-A in the stratosphere.These correction algorithms were applied to the GPS-TK historical sounding records,reducing biases in the corrected temperature and RH profiles when compared to radio occultation data.The correction of GPS-TK historical records illustrated an improvement in capturing the marine atmospheric structure,with more accurate atmospheric boundary layer height,convective available potential energy,and convective inhibition in the tropical ocean.This study contributes significantly to improving the quality of GPS radiosonde soundings and promotes the sharing of observation in the eastern tropical Indian Ocean and South China Sea.展开更多
At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with...At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with continuously changing temperature and relative humidity.The thermal conductivity of materials will inevitably change with temperature and humidity,leading to deviations in the estimation of energy consumption in the building.Therefore,in this study,variations in the thermal conductivity of eight common building insulation materials(glass wool,rock wool,silica aerogel blanket,expanded polystyrene,extruded polystyrene,phenolic foam,foam ceramic and foam glass)with temperature(in the range of 20-60°C)and relative humidity(in the range of 0-100%)were studied by experimental methods.The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maxi-mum growth rates from 3.9 to 22.7%in the examined temperature range.Due to the structural characteristics of materials,the increasing thermal conductivity of different materials varies depending on the relative humidity.The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%.In addition,the principles of selection of building insulation materials in different humidity regions were given.The research re-sults of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.展开更多
基金The Second Tibetan Plateau Scientific Expedition and Research Program under contract No.2019QZKK0102-02the National Natural Science Foundation of China under contract Nos 42230402,92158204,42176026,42076201,41049903,41149908,41249906,41249907,and 41249910+2 种基金the Guangdong Basic and Applied Basic Research Foundation under contract No.2022A1515240069the Marine Economic Development Special Program of Guangdong Province(Six Major Marine Industries):Research and Demonstration of Critical Technologies for Comprehensive Prevention and Control of Natural Disaster in Offshore Wind Farms,China under contract No.29[2023]the Fund of Fujian Provincial Key Laboratory of Marine Physical and Geological Processes under contract No.KLMPG-22-02.
文摘Shipboard radiosonde soundings are important for detecting and quantifying the multiscale variability of atmosphere-ocean interactions associated with mass exchanges.This study evaluated the accuracies of shipboard Global Positioning System(GPS)soundings in the eastern tropical Indian Ocean and South China Sea through a simultaneous balloon-borne inter-comparison of different radiosonde types.Our results indicate that the temperature and relative humidity(RH)measurements of GPS-TanKong(GPS-TK)radiosonde(used at most stations before 2012)have larger biases than those of ChangFeng-06-A(CF-06-A)radiosonde(widely used in current observation)when compared to reference data from Vaisala RS92-SGP radiosonde,with a warm bias of 5℃and dry bias of 10%during daytimes,and a cooling bias of-0.8℃and a moist bias of 6%during nighttime.These systematic biases are primarily attributed to the radiation effects and altitude deviation.An empirical correction algorithm was developed to retrieve the atmospheric temperature and RH profiles.The corrected profiles agree well with that of RS92-SGP,except for uncertainties of CF-06-A in the stratosphere.These correction algorithms were applied to the GPS-TK historical sounding records,reducing biases in the corrected temperature and RH profiles when compared to radio occultation data.The correction of GPS-TK historical records illustrated an improvement in capturing the marine atmospheric structure,with more accurate atmospheric boundary layer height,convective available potential energy,and convective inhibition in the tropical ocean.This study contributes significantly to improving the quality of GPS radiosonde soundings and promotes the sharing of observation in the eastern tropical Indian Ocean and South China Sea.
基金This work was supported by the National Natural Science Foundation of China(No.51878534,No.51878532 and U20A20311)State Key Laboratory of Green Building in Western China.
文摘At present,thermal conductivity is usually taken as a constant value in the calculation of building energy con-sumption and load.However,in the actual use of building materials,they are exposed to the environment with continuously changing temperature and relative humidity.The thermal conductivity of materials will inevitably change with temperature and humidity,leading to deviations in the estimation of energy consumption in the building.Therefore,in this study,variations in the thermal conductivity of eight common building insulation materials(glass wool,rock wool,silica aerogel blanket,expanded polystyrene,extruded polystyrene,phenolic foam,foam ceramic and foam glass)with temperature(in the range of 20-60°C)and relative humidity(in the range of 0-100%)were studied by experimental methods.The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maxi-mum growth rates from 3.9 to 22.7%in the examined temperature range.Due to the structural characteristics of materials,the increasing thermal conductivity of different materials varies depending on the relative humidity.The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%.In addition,the principles of selection of building insulation materials in different humidity regions were given.The research re-sults of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.