The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the co...The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability.展开更多
We propose a lightweight construction, a modification of Vanstone’s MAC construction, for the message authentication of the communication between Electronic Control Units (ECUs) in distributed car control systems. Th...We propose a lightweight construction, a modification of Vanstone’s MAC construction, for the message authentication of the communication between Electronic Control Units (ECUs) in distributed car control systems. The proposed approach can solve the task of error control and authentication in unified algorithmic technology, called MAC (Message Authentication Code) with ECC (Error Correction Code). We follow a provable approach in the design of the cryptographic primitive, where we quantify the security measures in the parameters of the system. Provable security approaches are missing in the field of secure in-vehicle communication.展开更多
基金The authors extend their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.1/85/42.
文摘The decoding algorithm for the correction of errors of arbitrary Mannheim weight has discussed for Lattice constellations and codes from quadratic number fields.Following these lines,the decoding algorithms for the correction of errors of n=p−12 length cyclic codes(C)over quaternion integers of Quaternion Mannheim(QM)weight one up to two coordinates have considered.In continuation,the case of cyclic codes of lengths n=p−12 and 2n−1=p−2 has studied to improve the error correction efficiency.In this study,we present the decoding of cyclic codes of length n=ϕ(p)=p−1 and length 2n−1=2ϕ(p)−1=2p−3(where p is prime integer andϕis Euler phi function)over Hamilton Quaternion integers of Quaternion Mannheim weight for the correction of errors.Furthermore,the error correction capability and code rate tradeoff of these codes are also discussed.Thus,an increase in the length of the cyclic code is achieved along with its better code rate and an adequate error correction capability.
文摘We propose a lightweight construction, a modification of Vanstone’s MAC construction, for the message authentication of the communication between Electronic Control Units (ECUs) in distributed car control systems. The proposed approach can solve the task of error control and authentication in unified algorithmic technology, called MAC (Message Authentication Code) with ECC (Error Correction Code). We follow a provable approach in the design of the cryptographic primitive, where we quantify the security measures in the parameters of the system. Provable security approaches are missing in the field of secure in-vehicle communication.