Polygonal finite elements remain an attractive option in finite element analysis due to their flexibility in modelingarbitrary shapes compared to triangles.In this study,a pentagonal membrane element was developed wit...Polygonal finite elements remain an attractive option in finite element analysis due to their flexibility in modelingarbitrary shapes compared to triangles.In this study,a pentagonal membrane element was developed with thestrain approach for the first time.The element possesses invariance,and the equilibrium constraint was appliedto the assumed strain field using corrective coefficients.Inspired by the advancing front technique,a pentagonalmesh was generated,and the mesh quality was enhanced with Laplacian smoothing.The performance of thedeveloped pentagonal element was assessed in a few numerical tests,and the results revealed its suitability inmodeling the bending of beams.Besides,the numerical results are enhanced when pentagonal elements are usedin mesh transitions along boundaries to smoothen curved edges and capture distributed loads.展开更多
Five phospholipids in human placenta were determined by phosphorus 31 nuclear magnetic resonance(^(31)P NMR)spectroscopy and thin-layer chromatography(TLC) scanning combined with the corrective method of absorbance pr...Five phospholipids in human placenta were determined by phosphorus 31 nuclear magnetic resonance(^(31)P NMR)spectroscopy and thin-layer chromatography(TLC) scanning combined with the corrective method of absorbance proportional coefficient. The NMR spectrometer used this investigation was a Bruker AM-500 spectrometer operating at 202.4 MHz for ^(31)P chemical shifts are relative to 85% phosphoric acid. TIC was carried out by silica gel H plate developed in chloroform-methanol-glacial acetic acid-ethanol-water(25:4:6:2:0.5),with Vaskovsky reagent as colour -developing agent of phospholipids.展开更多
Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction....Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.展开更多
Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycl...Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results.展开更多
Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment....Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method.展开更多
The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizin...The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse.The magnetic Reynolds number is used to express the eddy currents demagnetization.The correction coefficient being expressed as the index of the air-gap width,the inner cylinder thickness,iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent.The electromagnetic buffer(EMB)prototype is tested under intensive impact loads of different strengths at room temperature.The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force,velocity and displacement.Finally,high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.展开更多
ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accur...ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.展开更多
There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ...There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.展开更多
By using a 30-meter-long wave flume equipped with a double-plate wave maker,a series of depression ISWs were generated in a density stratified two-layer fluid and the forces exerted by oblique internal solitary waves(...By using a 30-meter-long wave flume equipped with a double-plate wave maker,a series of depression ISWs were generated in a density stratified two-layer fluid and the forces exerted by oblique internal solitary waves(ISWs)on fixed FPSO model had been measured.According to the laboratory experiments,a numerical flume taken the applicability of KdV,eKdV and MCC ISWs theories in consideration was adopted to study the force components.Based on the experimental data and the force composition,the simplified prediction model was established.It was shown that the horizontal and transversal loads consisted of two parts:the Froude−Krylov force that could be calculated by integrating the dynamic pressure induced by ISW along the FPSO wetted surface,as well as the viscous force that could be obtained by multiplying the friction coefficient Cfx(C_(fy)),correction factor K_(x)(K_(y))and the integration of particle tangential velocity along the FPSO wetted surface.The vertical load was mainly the vertical Froude−Krylov force.Based on the experimental results,a conclusion can be drawn that the friction coefficient Cf and correction factor K were regressed as a relationship of Reynolds number Re,Keulegan-Carpenter number KC,upper layer depth h1/h and ISW accident angleα.Moreover,the horizontal friction coefficient Cfx yielded the logarithmic function with Re,and transversal friction coefficient C_(fy)obeyed the exponent function with Re,while the correction factors K_(x)and K_(y)followed power function with KC.The force prediction was also performed based on the regression formulae and pressure integral.The predicted results agreed well with the experimental results.The maximum forces increase linearly with the ISWs amplitude.Besides,the upper layer thickness had an obvious influence on the extreme value of the horizontal and transversal forces.展开更多
According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under...According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.展开更多
When testing an electrohydraulic proportional valve,it is necessary to test the high frequency dynamic flow with bias.Because of the limitation of the piston stroke,a no-load hydraulic cylinder is only suitable for a ...When testing an electrohydraulic proportional valve,it is necessary to test the high frequency dynamic flow with bias.Because of the limitation of the piston stroke,a no-load hydraulic cylinder is only suitable for a reciprocating symmetrical dynamic flow test.Since the traditional differential pressure flowmeter is affected by viscosity and inertia of the fluid,it is only suitable for measuring steady flow.Therefore,a new type of double pressure differential dynamic flowmeter is designed to improve the traditional differential pressure flowmeter.The influence of fluid viscosity and inertia in the flow process are negated by subtracting the differential pressure in section expansion from the differential pressure in section contraction.The double differential pressure flowmeter is modeled and a flow meter prototype is designed.Then,the flow coefficients are identified and corrected by a practical test.Finally,the dynamic performance and steady-state precision of the flowmeter are verified by comparing with the test results of the no-load hydraulic cylinder.The double differential pressure dynamic flowmeter is proven to measure dynamic flow accurately,especially at higher dynamic frequencies.展开更多
Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of q...Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of quasi-monochromatic Light Emitting Diodes (LEDs) ranging from ultraviolet to near-infrared wavelengths as illumination sources was constructed. But the use of a large spectral band provided by non-monochromatic sources induces variation of focal plan of the imager due to chromatic aberration which rises up the diffraction effects and blurs the images causing shadow around them. It results in discrepancies between standard spectra and extracted spectra with microscope. So we need to calibrate that instrument to be a standard one. We proceed with two types of images comparison to choose the reference wavelength for image acquisition where diffraction effect is more reduced. At each wavelength chosen as a reference, one image is well contrasted. First, we compare the thirteen well contrasted images to identify that presenting more reduced shadow. In second time, we determine the mean of the shadow size over the images from each set. The correction of the discrepancies required measurements on filters using a standard spectrometer and the microscope in transmission mode and reflection mode. To evaluate the capacity of our device to transmit information in frequency domain, its modulation transfer function is evaluated. Multivariate analysis is used to test its capacity to recognize properties of well-known sample. The wavelength 700 nm was chosen to be the reference for the image acquisition, because at this wavelength the images are well contrasted. The measurement made on the filters suggested correction coefficients in transmission mode and reflection mode. The experimental instrument recognized the microsphere’s properties and led to the extraction of the standard transmittance and reflectance spectra. Therefore, this microscope is used as a conventional instrument.展开更多
The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permea...The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permeable spherical shell. The Brinkman's model for the flow inside the compos- ite sphere and the Stokes equation for the flow in the spheri- cal container were used to study the motion. The torque ex- perienced by the porous spherical particle in the presence of cavity is obtained. The wall correction factor is calculated. In the limiting cases, the analytical solution describing the torque for a porous sphere and for a solid sphere in an un- bounded medium are obtained from the present analysis.展开更多
基金supported by the Research Management Centre(RMC)of Multimedia University,Malaysia(Grant No.MMUI/220016).
文摘Polygonal finite elements remain an attractive option in finite element analysis due to their flexibility in modelingarbitrary shapes compared to triangles.In this study,a pentagonal membrane element was developed with thestrain approach for the first time.The element possesses invariance,and the equilibrium constraint was appliedto the assumed strain field using corrective coefficients.Inspired by the advancing front technique,a pentagonalmesh was generated,and the mesh quality was enhanced with Laplacian smoothing.The performance of thedeveloped pentagonal element was assessed in a few numerical tests,and the results revealed its suitability inmodeling the bending of beams.Besides,the numerical results are enhanced when pentagonal elements are usedin mesh transitions along boundaries to smoothen curved edges and capture distributed loads.
文摘Five phospholipids in human placenta were determined by phosphorus 31 nuclear magnetic resonance(^(31)P NMR)spectroscopy and thin-layer chromatography(TLC) scanning combined with the corrective method of absorbance proportional coefficient. The NMR spectrometer used this investigation was a Bruker AM-500 spectrometer operating at 202.4 MHz for ^(31)P chemical shifts are relative to 85% phosphoric acid. TIC was carried out by silica gel H plate developed in chloroform-methanol-glacial acetic acid-ethanol-water(25:4:6:2:0.5),with Vaskovsky reagent as colour -developing agent of phospholipids.
基金supported by the National Natural Science Foundation of China(No.62173281)the Natural Science Foundation of Sichuan Province(No.23ZDYF0734 and No.2023NSFSC1436)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(No.18kftk03).
文摘Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D12National Natural Science Foundation of Heilongjiang Province under Grant No.E 2016045+1 种基金National Natural Science Foundation of China under Grant No.5137816451508140
文摘Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results.
文摘Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method.
基金primarily supported by the National Natural Science Foundation of China(grant number 301070603)。
文摘The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse.The magnetic Reynolds number is used to express the eddy currents demagnetization.The correction coefficient being expressed as the index of the air-gap width,the inner cylinder thickness,iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent.The electromagnetic buffer(EMB)prototype is tested under intensive impact loads of different strengths at room temperature.The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force,velocity and displacement.Finally,high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1534209,51675446)Independent Subject of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
文摘ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.
基金supported by the National Programs for Fundamental Research and Development (No. 2013CB227900)the National Natural Science Foundation of China (Nos. 51204166, 51174195 and 51474209)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.
基金financially supported by the National Natural Science Foundation of China (Grant No. 11802301)the Scitech Project of Sanya Yazhou Bay Science and Technology City Administration (Grant No. SKJC-KJ-2019KY08)。
文摘By using a 30-meter-long wave flume equipped with a double-plate wave maker,a series of depression ISWs were generated in a density stratified two-layer fluid and the forces exerted by oblique internal solitary waves(ISWs)on fixed FPSO model had been measured.According to the laboratory experiments,a numerical flume taken the applicability of KdV,eKdV and MCC ISWs theories in consideration was adopted to study the force components.Based on the experimental data and the force composition,the simplified prediction model was established.It was shown that the horizontal and transversal loads consisted of two parts:the Froude−Krylov force that could be calculated by integrating the dynamic pressure induced by ISW along the FPSO wetted surface,as well as the viscous force that could be obtained by multiplying the friction coefficient Cfx(C_(fy)),correction factor K_(x)(K_(y))and the integration of particle tangential velocity along the FPSO wetted surface.The vertical load was mainly the vertical Froude−Krylov force.Based on the experimental results,a conclusion can be drawn that the friction coefficient Cf and correction factor K were regressed as a relationship of Reynolds number Re,Keulegan-Carpenter number KC,upper layer depth h1/h and ISW accident angleα.Moreover,the horizontal friction coefficient Cfx yielded the logarithmic function with Re,and transversal friction coefficient C_(fy)obeyed the exponent function with Re,while the correction factors K_(x)and K_(y)followed power function with KC.The force prediction was also performed based on the regression formulae and pressure integral.The predicted results agreed well with the experimental results.The maximum forces increase linearly with the ISWs amplitude.Besides,the upper layer thickness had an obvious influence on the extreme value of the horizontal and transversal forces.
基金Supported by the National Natural Science Foundation of China(No.41101503)the National Social Science Foundation of China(No.11&ZD161)Graduate Innovative Scientific Research Project of Chongqing Technology and Business University(No.yjscxx2014-052-29)
文摘According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.
基金Supported by the National Natural Science Foundation of China(No.51875498)Hebei Provincial Natural Science Fund Key Project(No.E2018203339)Hebei Provincial Natural Science Foundation Steel Joint Research Fund(No.E2017203079)
文摘When testing an electrohydraulic proportional valve,it is necessary to test the high frequency dynamic flow with bias.Because of the limitation of the piston stroke,a no-load hydraulic cylinder is only suitable for a reciprocating symmetrical dynamic flow test.Since the traditional differential pressure flowmeter is affected by viscosity and inertia of the fluid,it is only suitable for measuring steady flow.Therefore,a new type of double pressure differential dynamic flowmeter is designed to improve the traditional differential pressure flowmeter.The influence of fluid viscosity and inertia in the flow process are negated by subtracting the differential pressure in section expansion from the differential pressure in section contraction.The double differential pressure flowmeter is modeled and a flow meter prototype is designed.Then,the flow coefficients are identified and corrected by a practical test.Finally,the dynamic performance and steady-state precision of the flowmeter are verified by comparing with the test results of the no-load hydraulic cylinder.The double differential pressure dynamic flowmeter is proven to measure dynamic flow accurately,especially at higher dynamic frequencies.
文摘Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of quasi-monochromatic Light Emitting Diodes (LEDs) ranging from ultraviolet to near-infrared wavelengths as illumination sources was constructed. But the use of a large spectral band provided by non-monochromatic sources induces variation of focal plan of the imager due to chromatic aberration which rises up the diffraction effects and blurs the images causing shadow around them. It results in discrepancies between standard spectra and extracted spectra with microscope. So we need to calibrate that instrument to be a standard one. We proceed with two types of images comparison to choose the reference wavelength for image acquisition where diffraction effect is more reduced. At each wavelength chosen as a reference, one image is well contrasted. First, we compare the thirteen well contrasted images to identify that presenting more reduced shadow. In second time, we determine the mean of the shadow size over the images from each set. The correction of the discrepancies required measurements on filters using a standard spectrometer and the microscope in transmission mode and reflection mode. To evaluate the capacity of our device to transmit information in frequency domain, its modulation transfer function is evaluated. Multivariate analysis is used to test its capacity to recognize properties of well-known sample. The wavelength 700 nm was chosen to be the reference for the image acquisition, because at this wavelength the images are well contrasted. The measurement made on the filters suggested correction coefficients in transmission mode and reflection mode. The experimental instrument recognized the microsphere’s properties and led to the extraction of the standard transmittance and reflectance spectra. Therefore, this microscope is used as a conventional instrument.
文摘The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permeable spherical shell. The Brinkman's model for the flow inside the compos- ite sphere and the Stokes equation for the flow in the spheri- cal container were used to study the motion. The torque ex- perienced by the porous spherical particle in the presence of cavity is obtained. The wall correction factor is calculated. In the limiting cases, the analytical solution describing the torque for a porous sphere and for a solid sphere in an un- bounded medium are obtained from the present analysis.