The improved scene-based adaptive nonuniformity correction (NUC) algorithms using a neural network (NNT) approach for infrared image sequences are presented and analyzed. The retina-like neural networks using steepest...The improved scene-based adaptive nonuniformity correction (NUC) algorithms using a neural network (NNT) approach for infrared image sequences are presented and analyzed. The retina-like neural networks using steepest descent model was the first proposed infrared focal plane arrays (IRFPA) nonuniformity compensation method,which can perform parameter estimation of the sensors over time on a frame by frame basis. To increase the strength and the robustness of the NNT algorithm and to avoid the presence of ghosting artifacts,some optimization techniques,including momentum term,regularization factor and adaptive learning rate,were executed in the parameter learning process. In this paper,the local median filtering result of AX^U_ ij (n) is proposed as an alternative value of desired network output of neuron X_ ij (n),denoted as T_ ij (n),which is the local spatial average of AX^U_ ij (n) in traditional NNT methods. Noticeably,the NUC algorithm is inter-frame adaptive in nature and does not rely on any statistical assumptions on the scene data in the image sequence. Applications of this algorithm to the simulated video sequences and real infrared data taken with PV320 show that the correction results of image sequence are better than that of using original NNT approach,especially for the short-time image sequences (several hundred frames) subjected to the dense impulse noises with a number of dead or saturated pixels.展开更多
基于场景的非均匀校正算法(scene based nonuniformity correction,SBNUC)是非均匀校正技术今后的重点发展方向,介绍了近年来基于恒定统计约束的SBNUC、神经网络的SBNUC和运动估计的SBNUC算法的研究进展。研究了SBNUC算法在实际焦平面...基于场景的非均匀校正算法(scene based nonuniformity correction,SBNUC)是非均匀校正技术今后的重点发展方向,介绍了近年来基于恒定统计约束的SBNUC、神经网络的SBNUC和运动估计的SBNUC算法的研究进展。研究了SBNUC算法在实际焦平面探测器组件上的实现方法,该方法仅依赖拍摄序列的信息对焦平面探测器的增益和偏置参数进行组间更新或帧间更新,可有效补偿温漂。研制了一种具有自适应非均匀校正功能的非制冷焦平面探测器组件,红外视频经该组件处理后,图像质量有所提高。该组件可明显提高热成像系统的成像性能,并能动态地保证热成像系统随场景变化的稳定性。展开更多
文摘The improved scene-based adaptive nonuniformity correction (NUC) algorithms using a neural network (NNT) approach for infrared image sequences are presented and analyzed. The retina-like neural networks using steepest descent model was the first proposed infrared focal plane arrays (IRFPA) nonuniformity compensation method,which can perform parameter estimation of the sensors over time on a frame by frame basis. To increase the strength and the robustness of the NNT algorithm and to avoid the presence of ghosting artifacts,some optimization techniques,including momentum term,regularization factor and adaptive learning rate,were executed in the parameter learning process. In this paper,the local median filtering result of AX^U_ ij (n) is proposed as an alternative value of desired network output of neuron X_ ij (n),denoted as T_ ij (n),which is the local spatial average of AX^U_ ij (n) in traditional NNT methods. Noticeably,the NUC algorithm is inter-frame adaptive in nature and does not rely on any statistical assumptions on the scene data in the image sequence. Applications of this algorithm to the simulated video sequences and real infrared data taken with PV320 show that the correction results of image sequence are better than that of using original NNT approach,especially for the short-time image sequences (several hundred frames) subjected to the dense impulse noises with a number of dead or saturated pixels.
文摘基于场景的非均匀校正算法(scene based nonuniformity correction,SBNUC)是非均匀校正技术今后的重点发展方向,介绍了近年来基于恒定统计约束的SBNUC、神经网络的SBNUC和运动估计的SBNUC算法的研究进展。研究了SBNUC算法在实际焦平面探测器组件上的实现方法,该方法仅依赖拍摄序列的信息对焦平面探测器的增益和偏置参数进行组间更新或帧间更新,可有效补偿温漂。研制了一种具有自适应非均匀校正功能的非制冷焦平面探测器组件,红外视频经该组件处理后,图像质量有所提高。该组件可明显提高热成像系统的成像性能,并能动态地保证热成像系统随场景变化的稳定性。