Although the Chen-Ricles(CR)method and the Kolay-Ricles(KR)method have been applied to conduct pseudodynamic tests,they have both been found to have some adverse numerical properties,such as conditional stability ...Although the Chen-Ricles(CR)method and the Kolay-Ricles(KR)method have been applied to conduct pseudodynamic tests,they have both been found to have some adverse numerical properties,such as conditional stability for stiffness hardening systems and an unusual overshoot in the steady-state response of a high-frequency mode.An improved formulation for each method can be achieved by using a stability amplification factor to boost the unconditional stability range for stiffness hardening systems and a loading correction term to eliminate the unusual overshoot in the steady-state response of a high-frequency mode.The details for developing improved formulations for each method are shown in this work.展开更多
In this paper, a new method to approximate the compensation term in the Jacobian logarithm used by the MAP decoder is proposed. Using the proposed approximation, the complex functions In(.) and exp(.) in the Exact...In this paper, a new method to approximate the compensation term in the Jacobian logarithm used by the MAP decoder is proposed. Using the proposed approximation, the complex functions In(.) and exp(.) in the Exact-log-MAP algorithm can be estimated with high accuracy and lower computational complexity. The efficacy of the proposed approximation is investigated and demonstrated by applying it to iteratively decoded BICM (Bit Interleaved Coded Modulation).展开更多
Nonlinear materials have been well established as photo refractive switching material. Important applica- tions of isotropic nonlinear materials are seen in self-focusing, defocusing phenomena, switching systems, etc....Nonlinear materials have been well established as photo refractive switching material. Important applica- tions of isotropic nonlinear materials are seen in self-focusing, defocusing phenomena, switching systems, etc. The nonlinear correction term is basically responsible for the optical switches. Mach-Zehnder inter- ferometer (MZI) is a well-known arrangement for determining the above correction term, but there are some major problems for finding out the term by MZI. We propose a new method of finding the nonlinear correction term as well as the second order nonlinear susceptibility of the materials by using a modified MZI system. This method may be used to find out the above parameters for any unknown nonlinear material.展开更多
文摘Although the Chen-Ricles(CR)method and the Kolay-Ricles(KR)method have been applied to conduct pseudodynamic tests,they have both been found to have some adverse numerical properties,such as conditional stability for stiffness hardening systems and an unusual overshoot in the steady-state response of a high-frequency mode.An improved formulation for each method can be achieved by using a stability amplification factor to boost the unconditional stability range for stiffness hardening systems and a loading correction term to eliminate the unusual overshoot in the steady-state response of a high-frequency mode.The details for developing improved formulations for each method are shown in this work.
文摘In this paper, a new method to approximate the compensation term in the Jacobian logarithm used by the MAP decoder is proposed. Using the proposed approximation, the complex functions In(.) and exp(.) in the Exact-log-MAP algorithm can be estimated with high accuracy and lower computational complexity. The efficacy of the proposed approximation is investigated and demonstrated by applying it to iteratively decoded BICM (Bit Interleaved Coded Modulation).
文摘Nonlinear materials have been well established as photo refractive switching material. Important applica- tions of isotropic nonlinear materials are seen in self-focusing, defocusing phenomena, switching systems, etc. The nonlinear correction term is basically responsible for the optical switches. Mach-Zehnder inter- ferometer (MZI) is a well-known arrangement for determining the above correction term, but there are some major problems for finding out the term by MZI. We propose a new method of finding the nonlinear correction term as well as the second order nonlinear susceptibility of the materials by using a modified MZI system. This method may be used to find out the above parameters for any unknown nonlinear material.