期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
1
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES Finite Element methods Heat Equation Predictor-corrector Algorithm
下载PDF
Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations 被引量:3
2
作者 罗志强 陈志敏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期931-944,共14页
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ... A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically. 展开更多
关键词 three-dimensional (3D) nonlinear potential flow equation predictor-corrector finite difference method staggered grid nested iterative method 3D sloshing
下载PDF
Finite Volume Element Predictor-corrector Method for a Class of Nonlinear Parabolic Systems 被引量:1
3
作者 高夫征 《Northeastern Mathematical Journal》 CSCD 2005年第3期305-314,共10页
A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector meth... A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector method is derived. A numerical experiment shows that the numerical results are consistent with theoretical analysis. 展开更多
关键词 predictor-corrector method finite volume element error estimate
下载PDF
ALTERNATING BAND CRANK-NICOLSON METHOD FOR
4
作者 陈劲 张宝琳 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1993年第2期150-162,共13页
The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have th... The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have the advantages of parallel computing, stability and good accuracy. Tn this paper for the two-dimensional diffusion equation, the net region is divided into bands, a special kind of block. This method is called the alternating Band Crank-Nicolson method. 展开更多
关键词 Two-Dimensional Diffusion Equation Finite Difference Equation. Alternating Band crank-nicolson method.
下载PDF
Modified Efficient Families of Two and Three-Step Predictor-Corrector Iterative Methods for Solving Nonlinear Equations
5
作者 Sanjeev Kumar Vinay Kanwar Sukhjit Singh 《Applied Mathematics》 2010年第3期153-158,共6页
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ... In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency. 展开更多
关键词 Nonlinear Equations ITERATIVE methodS Multipoint ITERATIVE methodS Newton’s method Traub-Ostrowski’s method PREDICTOR-corrector methodS Order of Convergence
下载PDF
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
6
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation crank-nicolson scheme
下载PDF
A parallel method for numerical solution of delay differential equations
7
作者 丁效华 刘明珠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第3期37-39,共3页
A parallel diagonally iterated Runge Kutta (PDIRK) method is constructed to solve stiff initial value problems for delay differential equations. The order and stability of this PDIRK method has been analyzed, and the ... A parallel diagonally iterated Runge Kutta (PDIRK) method is constructed to solve stiff initial value problems for delay differential equations. The order and stability of this PDIRK method has been analyzed, and the iteration parameters of the method are tuned in such a way that fast convergence to the value of corrector is achieved. 展开更多
关键词 diagonally IMPLICIT RK methodS PARALLEL method corrector
下载PDF
Improving Wilson-θ and Newmark-β Methods for Quasi-Periodic Solutions of Nonlinear Dynamical Systems 被引量:1
8
作者 G. Liu Z. R. Lv Y. M. Chen 《Journal of Applied Mathematics and Physics》 2018年第8期1625-1635,共11页
Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. He... Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid. 展开更多
关键词 Wilson-θ method Newmark-β method QUASI-PERIODIC Solution PREDICTOR-corrector Algorithm
下载PDF
CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
9
作者 冯新龙 何银年 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期124-138,共15页
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the... In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme. 展开更多
关键词 nonlinear parabolic problem crank-nicolson scheme Newton method finiteelement method optimal error estimate
下载PDF
A Computational Study with Finite Difference Methods for Second Order Quasilinear Hyperbolic Partial Differential Equations in Two Independent Variables
10
作者 Pavlos Stampolidis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2018年第11期1193-1224,共32页
In this paper we consider the numerical method of characteristics for the numerical solution of initial value problems (IVPs) for quasilinear hyperbolic Partial Differential Equations, as well as the difference scheme... In this paper we consider the numerical method of characteristics for the numerical solution of initial value problems (IVPs) for quasilinear hyperbolic Partial Differential Equations, as well as the difference scheme Central Time Central Space (CTCS), Crank-Nicolson scheme, ω scheme and the method of characteristics for the numerical solution of initial and boundary value prob-lems for the one-dimension homogeneous wave equation. The initial deriva-tive condition is approximated by different second order difference quotients in order to examine which gives more accurate numerical results. The local truncation error, consistency and stability of the difference schemes CTCS, Crank-Nicolson and ω are also considered. 展开更多
关键词 Finite DIFFERENCE method CTCS method crank-nicolson method ω-method Numerical method of Characteristics Wave Equation
下载PDF
Four Steps Continuous Method for the Solution of <i>y″</i>= <i>f</i>(<i>x, y, y′</i>)
11
作者 Adetola Olaide Adesanya Mattew Remilekun Odekunle Mfon Odo Udoh 《American Journal of Computational Mathematics》 2013年第2期169-174,共6页
This paper proposes a continuous block method for the solution of second order ordinary differential equation. Collocation and interpolation of the power series approximate solution are adopted to derive a continuous ... This paper proposes a continuous block method for the solution of second order ordinary differential equation. Collocation and interpolation of the power series approximate solution are adopted to derive a continuous implicit linear multistep method. Continuous block method is used to derive the independent solution which is evaluated at selected grid points to generate the discrete block method. The order, consistency, zero stability and stability region are investigated. The new method was found to compare favourably with the existing methods in term of accuracy. 展开更多
关键词 Predictor corrector COLLOCATION Interpolation Power Series APPROXIMANT Continuous Block method
下载PDF
Travelling Waves: Interplay of Low to High Reynolds Number and Tan-Cot Function Method to Solve Burger’s Equations
12
作者 Md. Kamrujjaman Asif Ahmed Jahrul Alam 《Journal of Applied Mathematics and Physics》 2019年第4期861-873,共13页
We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on... We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions. 展开更多
关键词 Nonlinear PDES Tan-Cot Function method TRAVELLING Wave Solutions Burg-er’s Equation REYNOLDS Number crank-nicolson Scheme
下载PDF
A PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR CONVEX QUADRATIC PROGRAMMING
13
作者 Liang Ximing(梁昔明) +1 位作者 Qian Jixin(钱积新) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第1期52-62,共11页
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee... The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made. 展开更多
关键词 CONVEX QUADRATIC programming INTERIOR-POINT methods PREDICTOR-corrector algorithms NUMERICAL experiments.
下载PDF
Review on the Current Stochastic Numerical Methods for Econometric Analysis
14
作者 Lewis N.K.Mambo Rostin M.M.Mabela +1 位作者 Jean-Pierre B.Bosonga Eugene M.Mbuyi 《American Journal of Computational Mathematics》 2019年第4期328-347,共20页
The main aim of this paper is to present and emphasize the contribution of stochastic numerical methods as must tools for the modern econometric modelisation. Indeed, the stochastic numerical methods play an important... The main aim of this paper is to present and emphasize the contribution of stochastic numerical methods as must tools for the modern econometric modelisation. Indeed, the stochastic numerical methods play an important role in mathematical modelling and the econometric analysis because they model uncertainties that govern the real-world data. However these powerful tools are not well-known and understood by many economists and financial econometricians. 展开更多
关键词 Stochastic Differential Equations The Euler-Maruyama Scheme The Milstein Scheme The crank-nicolson Scheme Runge-Kutta method Ito Integrals Econometric Analysis
下载PDF
适应多射程与路径约束的再入预测校正制导
15
作者 郭浩辰 黄汉斌 +1 位作者 郭涛 杨业 《导弹与航天运载技术(中英文)》 CSCD 北大核心 2024年第5期48-55,共8页
针对存在不同分布的路径约束与不同航程需求的升力式飞行器再入飞行任务,设计二次曲线形式的倾侧角剖面以增强飞行器的侧向机动能力,通过预测校正的迭代过程修正倾侧角剖面以满足航程需求,采用改进人工势场法设计侧向制导方法导引飞行... 针对存在不同分布的路径约束与不同航程需求的升力式飞行器再入飞行任务,设计二次曲线形式的倾侧角剖面以增强飞行器的侧向机动能力,通过预测校正的迭代过程修正倾侧角剖面以满足航程需求,采用改进人工势场法设计侧向制导方法导引飞行器满足路径约束,最后通过粒子群算法优化制导参数以获得性能最优的轨迹。仿真结果验证了该算法能够适应多种航程需求与路径约束且以较高精度满足终端约束。 展开更多
关键词 升力式飞行器 路径约束 预测校正制导 人工势场 粒子群优化
下载PDF
空间运动方程快速求解器设计与实现
16
作者 王晓蕾 黄章骞 +1 位作者 房旭 宋宇鲲 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期54-61,共8页
文章基于四阶经典龙格库塔法(classical Runge-Kutta method of order four,RK-4)和四阶Adams预测校正法(fourth-order Adams predictor-corrector method,Adams-4),提出一种现场可编程逻辑门阵列(field programmable gate array,FPGA)... 文章基于四阶经典龙格库塔法(classical Runge-Kutta method of order four,RK-4)和四阶Adams预测校正法(fourth-order Adams predictor-corrector method,Adams-4),提出一种现场可编程逻辑门阵列(field programmable gate array,FPGA)实现的数据路径可动态配置的空间运动方程快速求解器(space motion equation fast solver,SMEFS)。SMEFS采用折叠式结构,借助高效的任务映射和精准的状态管理,通过资源复用和动态配置运算器内部连接关系实现数据路径的动态配置,快速求解空间运动方程,并有效节省硬件资源。采用某型运载火箭的相关数据对SMEFS进行大批量空间运动方程求解的性能评估,实验结果表明SMEFS能够快速可靠地求解发射坐标系下的五自由度空间运动方程,与软件求解的平均加速比为12.765,求解结果最大相对误差小于9×10^(-5,)具备较好的加速效果和较高的计算可靠性。 展开更多
关键词 四阶经典龙格库塔法(RK-4) 四阶Adams预测校正法(Adams-4) 空间运动方程 折叠技术 现场可编程逻辑门阵列(FPGA)
下载PDF
摩擦对平行圆盘间隙中一维可压缩流动的影响分析
17
作者 郭良斌 李玉立 《机床与液压》 北大核心 2024年第9期81-86,共6页
以平行圆盘间隙中一维可压缩理想流动分析结果为基础,在考虑平行圆盘间隙内面积变化和壁面摩擦时,通过理论推导及程序编制,利用预估-校正方法得到了平行气膜区气膜对称线上一维模型的马赫数及摩擦因数的分布规律。结果表明:对于一维模... 以平行圆盘间隙中一维可压缩理想流动分析结果为基础,在考虑平行圆盘间隙内面积变化和壁面摩擦时,通过理论推导及程序编制,利用预估-校正方法得到了平行气膜区气膜对称线上一维模型的马赫数及摩擦因数的分布规律。结果表明:对于一维模型而言,气膜对称线上的马赫数始终呈现下降的趋势,摩擦因数始终呈现上升的趋势,但摩擦因数在整个平行圆盘间隙中变化很小;对于不同材料的轴承圆盘,由于精加工工艺的不同会导致壁面相对粗糙度发生变化,进而使壁面摩擦因数发生显著变化,即摩擦因数受到相对粗糙度的影响很大;在计算过程中采用平均摩擦因数可得到相似的计算结果,并满足计算精度要求。 展开更多
关键词 高压圆盘气体轴承 一维绝热定常流动 预估-校正法 马赫数 摩擦因数
下载PDF
基于预测-校正原对偶内点法的无功优化新模型 被引量:62
18
作者 余娟 颜伟 +2 位作者 徐国禹 杜鹏 刘方 《中国电机工程学报》 EI CSCD 北大核心 2005年第11期146-151,共6页
在有载可调变压器模型中引入虚拟节点,并通过该节点的电压来表示理想变压器对功率、电压的转换关系,由此在直角坐标系中建立了无功优化问题的二阶新模型。该新模型的海森矩阵是精确的常系数矩阵,在内点法迭代过程中只需要计算一次,从而... 在有载可调变压器模型中引入虚拟节点,并通过该节点的电压来表示理想变压器对功率、电压的转换关系,由此在直角坐标系中建立了无功优化问题的二阶新模型。该新模型的海森矩阵是精确的常系数矩阵,在内点法迭代过程中只需要计算一次,从而缩短了每次迭代的计算时间。利用AMD算法对内点法修正方程的系数矩阵进行节点优化编号,减少了其LU分解所产生的注入元。通过存储海森矩阵的非零元素值、其行、列号及对应的拉格朗日乘子编号,提出了一种新的非零元素存储方式,极大地减少了海森矩阵与乘子线性组合的计算量。基于节点数从14到1338的7个测试系统进行了仿真计算,结果验证了所建模型与方法的正确性与有效性。这种建立模型的思想还可以应用到需要计算海森矩阵的动态无功优化、最优潮流以及状态估计等问题的算法中,以提高其计算速度。 展开更多
关键词 无功优化 新模型 原对偶内点法 校正 预测 拉格朗日乘子 系数矩阵 非零元素 变压器模型 理想变压器 直角坐标系 虚拟节点 转换关系 优化问题 迭代过程 计算时间 修正方程 LU分解 存储方式 线性组合 仿真计算 测试系统 状态估计
下载PDF
调节阀阀芯变开度振动分析 被引量:13
19
作者 马玉山 相海军 +2 位作者 傅卫平 李德信 原大宁 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第6期1087-1092,共6页
利用ANSYS软件建立了可变压差下自动调节阀阀门内部流场模型以及阀芯模型,对流场和阀芯进行耦合力学分析阀芯的大位移运动,同时做实验验证此方法。用任意拉格朗日-欧拉(ALE)有限元计算方法分析流场。阀芯和流场有大位移运动的共同边界... 利用ANSYS软件建立了可变压差下自动调节阀阀门内部流场模型以及阀芯模型,对流场和阀芯进行耦合力学分析阀芯的大位移运动,同时做实验验证此方法。用任意拉格朗日-欧拉(ALE)有限元计算方法分析流场。阀芯和流场有大位移运动的共同边界采用流体-固体耦合约束,并在计算中采用预测-多步校正算法,避免了反复迭代所导致的过大计算量。通过理论研究和实验发现,当由气动执行机构控制的调节阀开度调节时,阀芯有个振动的过程,且阀芯的振动是一种有规律的衰减振动。 展开更多
关键词 调节阀 ALE有限元法 预测-多步校正法 开度调节 振动
下载PDF
电压崩溃临界点的非线性规划模型及算法 被引量:52
20
作者 郭瑞鹏 韩祯祥 王勤 《中国电机工程学报》 EI CSCD 北大核心 1999年第4期14-17,共4页
对直接求取电压崩溃临界点的零特征根法进行扩展,将临界点计算转化为非线性规划问题,并用预测校正原对偶内点法求解。该方法能够考虑各种不等式约束条件,因而具有较强的鲁棒性。文章还证明了零特征根法事实上是非线性规划法的一个特... 对直接求取电压崩溃临界点的零特征根法进行扩展,将临界点计算转化为非线性规划问题,并用预测校正原对偶内点法求解。该方法能够考虑各种不等式约束条件,因而具有较强的鲁棒性。文章还证明了零特征根法事实上是非线性规划法的一个特例。最后通过对IEEE-30及IEEE-118测试系统的仿真计算验证了该模型及算法的有效性。 展开更多
关键词 电力系统稳定 电压崩溃临界点 非线性规划 算法
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部