We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with...We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutua...In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.展开更多
The European Union(EU) and Organisation for Economic Co-operation and Development(OECD) aim to develop long-term policies for their respective member countries. Having observed increasing dangers to the environment po...The European Union(EU) and Organisation for Economic Co-operation and Development(OECD) aim to develop long-term policies for their respective member countries. Having observed increasing dangers to the environment posed by rising economic growth, they are seeking pathways to enable policy action on economic growth and environmental sustainability. Given the facts in theoretical and empirical studies, this study assessed the validity of the decoupling hypothesis by investigating asymmetricity in the relationship between environmental sustainability and economic growth in nine Eastern European countries from 1998 to 2017 using the cross-section augmented Dickey-Fuller(CADF) unit root, panel corrected standard error(PCSE), common correlated effect mean group(CCEMG), and Dumitrescu Hurlin causality approaches. Both population growth and drinking water are used as controlled variables. The outcomes establish strong cointegration among all the variables of interest. According to the results of CCEMG test, economic growth exerts short-term environmental degradation but has long-term environmental benefits in Eastern Europe;and population growth and drinking water exert a positive effect on environmental sustainability in both the short-and long-run. The results of Dumitrescu Hurlin causality test indicate that environmental sustainability is unidirectionally affected by economic growth. Based on these outcomes, we suggest the following policies:(1) the EU and OECD should implement member-targeted policies on economic growth and fossil-fuel use towards regulating industrial pollution, water use, and population control;and(2) the EU and OECD member countries should invest in environmental technologies through green research and development(R&D) to transform their dirty industrial processes and ensure productive energy use.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency ma...This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency market and the current models,a correlated asymmetric jump model is proposed to capture the co-movement of the correlated jump risks for the three rates and identify the correlated jump risk premia.The likelihood ratio test results show that the new model performs best in 1-,3-,6-,and 12-month maturities.The in-and out-of-sample test results indicate that the new model can capture more risk factors with relatively small pricing errors.Finally,the risk factors captured by the new model can explain the exchange rate fluctuations for various economic events.展开更多
Highly controlled electronic correlation in twisted graphene heterostructures has gained enormous research interests recently,encouraging exploration in a wide range of moirésuperlattices beyond the celebrated tw...Highly controlled electronic correlation in twisted graphene heterostructures has gained enormous research interests recently,encouraging exploration in a wide range of moirésuperlattices beyond the celebrated twisted bilayer graphene.Here we characterize correlated states in an alternating twisted Bernal bilayer–monolayer–monolayer graphene of~1.74°,and find that both van Hove singularities and multiple correlated states are asymmetrically tuned by displacement fields.In particular,when one electron per moiréunit cell is occupied in the electron-side flat band,or the hole-side flat band(i.e.,three holes per moiréunit cell),the correlated peaks are found to counterintuitively grow with heating and maximize around 20 K–a signature of Pomeranchuk effect.Our multilayer heterostructure opens more opportunities to engineer complicated systems for investigating correlated phenomena.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performa...A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performance dependent spatially correlated fluctuation in a DQD photocell. The effects of spatially correlated fluctuation on charge transfer and output photovoltaic efficiency were explored in a proposed DQD photocell model. The results revealed that the charge transport process and the time to peak photovoltaic efficiency were both significantly delayed by the spatially correlated fluctuation, while the anti-spatially correlated fluctuation reduced the output peak photovoltaic efficiency. Further results revealed that the delayed response could be suppressed by gap difference and tunneling coefficient within two dots. Subsequent investigation demonstrated that the delayed response was caused by the spatial correlation fluctuation slowing the generative process of noise-induced coherence, which had previously been proven to improve the quantum photovoltaic performance in quantum photocells. And the reduced photovoltaic properties were verified by the damaged noise-induced coherence owing to the anti-spatial correlation fluctuation and a hotter thermal ambient environment. The discovery of delayed response generated by the spatially correlated fluctuations will deepen the understanding of quantum features of electron transfer, as well as promises to take our understanding even further concerning quantum techniques for high efficiency DQD solar cells.展开更多
Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced...Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.展开更多
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac...Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.展开更多
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been tr...In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.展开更多
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms...The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.展开更多
The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate be...The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.展开更多
The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study del...The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de...Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.展开更多
基金the National Natural Sci-ence Foundation of China(Grant No.61988102)the Key Research and Development Program of Guangdong Province(Grant No.2019B090917007)+5 种基金the Science and Technology Planning Project of Guangdong Province(Grant No.2019B090909011)Q.L.acknowledges Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0018)Z.L.acknowledges the support of fund-ing from Chinese Academy of Sciences E1Z1D10200 and E2Z2D10200from ZJ project 2021QN02X159 and from JSPS(Grant Nos.PE14052 and P16027)We gratefully ac-knowledge HZWTECH for providing computation facilities.Z.-X.H.was supported by the National Natural Science Foun-dation of China(Grant Nos.11974064 and 12147102)the Fundamental Research Funds for the Central Universities(Grant No.2020CDJQY-Z003).
文摘We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
文摘In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.
文摘The European Union(EU) and Organisation for Economic Co-operation and Development(OECD) aim to develop long-term policies for their respective member countries. Having observed increasing dangers to the environment posed by rising economic growth, they are seeking pathways to enable policy action on economic growth and environmental sustainability. Given the facts in theoretical and empirical studies, this study assessed the validity of the decoupling hypothesis by investigating asymmetricity in the relationship between environmental sustainability and economic growth in nine Eastern European countries from 1998 to 2017 using the cross-section augmented Dickey-Fuller(CADF) unit root, panel corrected standard error(PCSE), common correlated effect mean group(CCEMG), and Dumitrescu Hurlin causality approaches. Both population growth and drinking water are used as controlled variables. The outcomes establish strong cointegration among all the variables of interest. According to the results of CCEMG test, economic growth exerts short-term environmental degradation but has long-term environmental benefits in Eastern Europe;and population growth and drinking water exert a positive effect on environmental sustainability in both the short-and long-run. The results of Dumitrescu Hurlin causality test indicate that environmental sustainability is unidirectionally affected by economic growth. Based on these outcomes, we suggest the following policies:(1) the EU and OECD should implement member-targeted policies on economic growth and fossil-fuel use towards regulating industrial pollution, water use, and population control;and(2) the EU and OECD member countries should invest in environmental technologies through green research and development(R&D) to transform their dirty industrial processes and ensure productive energy use.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
文摘This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency market and the current models,a correlated asymmetric jump model is proposed to capture the co-movement of the correlated jump risks for the three rates and identify the correlated jump risk premia.The likelihood ratio test results show that the new model performs best in 1-,3-,6-,and 12-month maturities.The in-and out-of-sample test results indicate that the new model can capture more risk factors with relatively small pricing errors.Finally,the risk factors captured by the new model can explain the exchange rate fluctuations for various economic events.
基金support from the National Key R&D Program of China (Grant Nos.2021YFA1400100 and 2019YFA0307800)the National Natural Science Foundation of China (Grant No.11974027)+2 种基金support from the National Natural Science Foundation of China (Grant No.62275265)Beijing Natural Science Foundation (Grant No.Z190011)Beijing Natural Science Foundation (Grant No.4222084)。
文摘Highly controlled electronic correlation in twisted graphene heterostructures has gained enormous research interests recently,encouraging exploration in a wide range of moirésuperlattices beyond the celebrated twisted bilayer graphene.Here we characterize correlated states in an alternating twisted Bernal bilayer–monolayer–monolayer graphene of~1.74°,and find that both van Hove singularities and multiple correlated states are asymmetrically tuned by displacement fields.In particular,when one electron per moiréunit cell is occupied in the electron-side flat band,or the hole-side flat band(i.e.,three holes per moiréunit cell),the correlated peaks are found to counterintuitively grow with heating and maximize around 20 K–a signature of Pomeranchuk effect.Our multilayer heterostructure opens more opportunities to engineer complicated systems for investigating correlated phenomena.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008)Yunnan Fundamental Research Projects, China (Grant No. 2016FB009)。
文摘A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performance dependent spatially correlated fluctuation in a DQD photocell. The effects of spatially correlated fluctuation on charge transfer and output photovoltaic efficiency were explored in a proposed DQD photocell model. The results revealed that the charge transport process and the time to peak photovoltaic efficiency were both significantly delayed by the spatially correlated fluctuation, while the anti-spatially correlated fluctuation reduced the output peak photovoltaic efficiency. Further results revealed that the delayed response could be suppressed by gap difference and tunneling coefficient within two dots. Subsequent investigation demonstrated that the delayed response was caused by the spatial correlation fluctuation slowing the generative process of noise-induced coherence, which had previously been proven to improve the quantum photovoltaic performance in quantum photocells. And the reduced photovoltaic properties were verified by the damaged noise-induced coherence owing to the anti-spatial correlation fluctuation and a hotter thermal ambient environment. The discovery of delayed response generated by the spatially correlated fluctuations will deepen the understanding of quantum features of electron transfer, as well as promises to take our understanding even further concerning quantum techniques for high efficiency DQD solar cells.
基金supported by National Natural Science Foundation of China(Grant Nos.52279137,52009090).
文摘Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.
基金the National Natural Science Foun-dation of China(Grant Nos.12105090 and 12175057).
文摘Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
文摘In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.
文摘The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.
文摘The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.
基金funded by the National Key R&D Program Project(No.2022YFC3103604).
文摘The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金supported by the Hunan Provincial Natrual Science Foundation of China(2022JJ30103)“the 14th Five-Year”Key Disciplines and Application Oriented Special Disciplines of Hunan Province(Xiangjiaotong[2022],351)the Science and Technology Innovation Program of Hunan Province(2016TP1020).
文摘Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.