Coutsourides (1980) derives an ad hoc nuisance parameter removal test for testing the equality of two multiple correlation coefficients of two independent p variate normal populations, under the assumption that a samp...Coutsourides (1980) derives an ad hoc nuisance parameter removal test for testing the equality of two multiple correlation coefficients of two independent p variate normal populations, under the assumption that a sample of size n is available from each population. He also extends his ad hoc nuisance parameter removal test to the testing of the equality of two multiple correlation matrices. This paper presents likelihood ratio tests for testing the equality of k multiple correlation coefficients, and also k partial correlation coefficients.展开更多
Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named c...Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named correlation coefficient of multidirectional standard deviations(CCMS) that is solely based on statistics. First, we prove the reliability of the proposed method using a single model and then a combination of models. The proposed method is evaluated by comparing the results with those obtained by other edge-detection methods. The CCMS method offers outstanding recognition, retains the sharpness of details, and has low sensitivity to noise. We also applied the CCMS method to Bouguer anomaly data of a potash deposit in Laos. The applicability of the CCMS method is shown by comparing the inferred tectonic framework to that inferred from remote sensing(RS) data.展开更多
Real-life data introduce noise,uncertainty,and imprecision to statistical projects;it is advantageous to consider strategies to overcome these information expressions and processing problems.Neutrosophic(indeterminate...Real-life data introduce noise,uncertainty,and imprecision to statistical projects;it is advantageous to consider strategies to overcome these information expressions and processing problems.Neutrosophic(indeterminate)numbers can flexibly and conveniently represent the hybrid information of the partial determinacy and partial indeterminacy in an indeterminate setting,while a fuzzy multiset is a vital mathematical tool in the expression and processing of multi-valued fuzzy information with different and/or same fuzzy values.If neutrosophic numbers are introduced into fuzzy sequences in a fuzzy multiset,the introduced neutrosophic number sequences can be constructed as the neutrosophic number multiset or indeterminate fuzzy multiset.Motivated based on the idea,this study first proposes an indeterminate fuzzy multiset,where each element in a universe set can be repeated more than once with the different and/or identical indeterminate membership values.Then,we propose the parameterized correlation coefficients of indeterminate fuzzy multisets based on the de-neutrosophication of transforming indeterminate fuzzy multisets into the parameterized fuzzy multisets by a parameter(the parameterized de-neutrosophication method).Since indeterminate decision-making issues need to be handled by an indeterminate decision-making method,a group decision-making method using the weighted parameterized correlation coefficients of indeterminate fuzzy multisets is developed along with decision makers’different decision risks(small,moderate,and large risks)so as to handle multicriteria group decision-making problems in indeterminate fuzzy multiset setting.Finally,the developed group decision-making approach is used in an example on a selection problem of slope design schemes for an open-pit mine to demonstrate its usability and flexibility in the indeterminate group decision-making problem with indeterminate fuzzy multisets.展开更多
In this paper, we study local influence analysis for Zhang's generalized correlation coefficients and Hotelling's generalized correlation coefficient by using approach. of local influence analysis suggested by...In this paper, we study local influence analysis for Zhang's generalized correlation coefficients and Hotelling's generalized correlation coefficient by using approach. of local influence analysis suggested by Shi (1991), i.e., generalized influence function (GIF) and generalized Cook distance (GCD). An example is given to illustrate our results.展开更多
In this simulation study, five correlation coefficients, namely, Pearson, Spearman, Kendal Tau, Permutation-based, and Winsorized were compared in terms of Type I error rate and power under different scenarios where t...In this simulation study, five correlation coefficients, namely, Pearson, Spearman, Kendal Tau, Permutation-based, and Winsorized were compared in terms of Type I error rate and power under different scenarios where the underlying distributions of the variables of interest, sample sizes and correlation patterns were varied. Simulation results showed that the Type I error rate and power of Pearson correlation coefficient were negatively affected by the distribution shapes especially for small sample sizes, which was much more pronounced for Spearman Rank and Kendal Tau correlation coefficients especially when sample sizes were small. In general, Permutation-based and Winsorized correlation coefficients are more robust to distribution shapes and correlation patterns, regardless of sample size. In conclusion, when assumptions of Pearson correlation coefficient are not satisfied, Permutation-based and Winsorized correlation coefficients seem to be better alternatives.展开更多
The district cooling system (DCS) with ice storage can reduce the peak electricity demand of the business district buildings it serves, improve system efficiency, and lower operational costs. This study utilizes a mon...The district cooling system (DCS) with ice storage can reduce the peak electricity demand of the business district buildings it serves, improve system efficiency, and lower operational costs. This study utilizes a monitoring and control platform for DCS with ice storage to analyze historical parameter values related to system operation and executed operations. We assess the distribution of cooling loads among various devices within the DCS, identify operational characteristics of the system through correlation analysis and principal component analysis (PCA), and subsequently determine key parameters affecting changes in cooling loads. Accurate forecasting of cooling loads is crucial for determining optimal control strategies. The research process can be summarized briefly as follows: data preprocessing, parameter analysis, parameter selection, and validation of load forecasting performance. The study reveals that while individual devices in the system perform well, there is considerable room for improving overall system efficiency. Six principal components have been identified as input parameters for the cold load forecasting model, with each of these components having eigenvalues greater than 1 and contributing to an accumulated variance of 87.26%, and during the dimensionality reduction process, we obtained a confidence ellipse with a 95% confidence interval. Regarding cooling load forecasting, the Relative Absolute Error (RAE) value of the light gradient boosting machine (lightGBM) algorithm is 3.62%, Relative Root Mean Square Error (RRMSE) is 42.75%, and R-squared value (R<sup>2</sup>) is 92.96%, indicating superior forecasting performance compared to other commonly used cooling load forecasting algorithms. This research provides valuable insights and auxiliary guidance for data analysis and optimizing operations in practical engineering applications. .展开更多
Formal change is made of the correlation coefficient(COCOEF)expression,leading to a new formula consisting of Fourier spectral coefficients that indicates a direct connection between the new form and atmospheric dynam...Formal change is made of the correlation coefficient(COCOEF)expression,leading to a new formula consisting of Fourier spectral coefficients that indicates a direct connection between the new form and atmospheric dynamic equations,thus resulting in a dynamic equation represented by COCOEF,which is meaningful in exploring a large-scale dynamic process in terms of the correlation field because the connection revealed by the field can have dynamic explana- tion with the aid of the new formula.展开更多
The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient meas...The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient measure(CCM)to assess the strength of the association between HFGs in this article since CCMs have a high capacity to process and interpret data.The CCM that is proposed between the HFGs has better qualities than the existing ones.It lowers restrictions on the hesitant fuzzy elements’length and may be used to establish whether the HFGs are connected negatively or favorably.Additionally,a CCMbased attribute DM approach is built into a hesitant fuzzy environment.This article suggests the use of weighted correlation coefficient measures(WCCMs)using the CCM concept to quantify the correlation between two HFGs.The decisionmaking problems of hesitancy fuzzy preference relations(HFPRs)are considered.This research proposes a new technique for assessing the relative weights of experts based on the uncertainty of HFPRs and the correlation coefficient degree of each HFPR.This paper determines the ranking order of all alternatives and the best one by using the CCMs between each option and the ideal choice.In the meantime,the appropriate example is given to demonstrate the viability of the new strategies.展开更多
Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July...Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.展开更多
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari...Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.展开更多
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th...Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.展开更多
The phenomenon of stochastic resonance (SR) based on the correlation coefficient in a parallel array of threshold devices is discussed. For four representative noises: the Gaussian noise, the uniform noise, the Lap...The phenomenon of stochastic resonance (SR) based on the correlation coefficient in a parallel array of threshold devices is discussed. For four representative noises: the Gaussian noise, the uniform noise, the Laplace noise and the Cauchy noise, when the signal is subthreshold, noise can improve the correlation coefficient and SR exists. The efficacy of SR can be significantly enhanced and the maximum of the correlation coefficient can dramatically approach to one as the number of the threshold devices in the parallel array increases. Two theorems are presented to prove that SR has some robustness to noises in the parallel array. These results further extend the applicability of SR in signal processing.展开更多
Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the po...Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the polar vortices,and stratospheric Planetary Waves(PWs)by analyzing and comparing their trends.Interestingly,within overall increasing trends,the duration and strength of SSWs exhibit increasing and decreasing trends before and after the winter of 2002,respectively.To reveal possible physical mechanisms driving these trends,we analyzed the long-term trends of the winter(from December to February)polar vortices and of stratospheric PWs with zonal wave number 1.Notably,our results show that in all three time periods(the entire period of 41winters,1980 to 2020,and the two subperiods—1980-2002 and 2002-2020)enhancing SSWs were always accompanied by weakening winter polar vortices and strengthening polar PWs like Stationary Planetary Waves(SPWs)and 16-day waves,and vice versa.This is the first proof,based on ERA5 long-term trend data,that weakening polar vortices and enhancing stratospheric PWs(especially SPWs)could cause an increase in SSWs.展开更多
The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herei...The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.展开更多
Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identi...Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identification index,which leads to detection failure when the arc zero-off characteristic is short.To solve this problem,this paper presents an arc fault identification method by utilizing integrated signal characteristics of both the fault line and sound lines.Firstly,the waveform characteristics of the fault line and sound lines under an arc grounding fault are studied.After that,the convex hull,gradient product,and correlation coefficient index are used as the basic characteristic parameters to establish fault identification criteria.Then,the logistic regression algorithm is employed to deal with the reference samples,establish the machine discrimination model,and realize the discrimination of fault types.Finally,simulation test results and experimental results verify the accuracy of the proposed method.The comparison analysis shows that the proposed method has higher recognition accuracy,especially when the arc dissipation power is smaller than 2×10^(3) W,the zero-off period is not obvious.In conclusion,the proposed method expands the arc fault identification theory.展开更多
Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into...Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.展开更多
In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentia...In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentially through time.The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient,calculated with the data within the time window,which we call the local running correlation coefficient(LRCC).The LRCC is calculated via the two anomalies corresponding to the two local means,meanwhile,the local means also vary.It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means.To address this problem,two unchanged means obtained from all available data are adopted to calculate an RCC,which is called the synthetic running correlation coefficient(SRCC).When the anomaly variations are dominant,the two RCCs are similar.However,when the variations of the means are dominant,the difference between the two RCCs becomes obvious.The SRCC reflects the correlations of both the anomaly variations and the variations of the means.Therefore,the SRCCs from different time points are intercomparable.A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data.The SRCC always meets this criterion,while the LRCC sometimes fails.Therefore,the SRCC is better than the LRCC for running correlations.We suggest using the SRCC to calculate the RCCs.展开更多
Aim To study the reason of the insensitiveness of Pearson product-momentcorrelation coefficient as a similarity measure and the method to improve its sensitivity. MethodsExperimental and simulated data sets were used....Aim To study the reason of the insensitiveness of Pearson product-momentcorrelation coefficient as a similarity measure and the method to improve its sensitivity. MethodsExperimental and simulated data sets were used. Results The distribution range of the data setsinfluences the sensitivity of Pearson product-moment correlation coefficient. Weighted Pearsonproduct-moment correlation coefficient is more sensitive when the range of the data set is large.Conclusion Weighted Pearson product-moment correlation coefficient is necessary when the range ofthe data set is large.展开更多
The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficie...The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficient is proposed. The original time delay information is transfered into the delay between the autocorrelation and cross-correlation function, and the precise estimating result by wave-comparison is given. The algorithm proposed here is also compared with other algorithms and its advantages over other algorithms are proved. The theoretical analysis and simulation show the effectiveness of the proposed algorithm.展开更多
The running correlation coefficient(RCC)is useful for capturing temporal variations in correlations between two time series.The local running correlation coefficient(LRCC)is a widely used algorithm that directly appli...The running correlation coefficient(RCC)is useful for capturing temporal variations in correlations between two time series.The local running correlation coefficient(LRCC)is a widely used algorithm that directly applies the Pearson correlation to a time window.A new algorithm called synthetic running correlation coefficient(SRCC)was proposed in 2018 and proven to be rea-sonable and usable;however,this algorithm lacks a theoretical demonstration.In this paper,SRCC is proven theoretically.RCC is only meaningful when its values at different times can be compared.First,the global means are proven to be the unique standard quantities for comparison.SRCC is the only RCC that satisfies the comparability criterion.The relationship between LRCC and SRCC is derived using statistical methods,and SRCC is obtained by adding a constraint condition to the LRCC algorithm.Dividing the temporal fluctuations into high-and low-frequency signals reveals that LRCC only reflects the correlation of high-frequency signals;by contrast,SRCC reflects the correlations of high-and low-frequency signals simultaneously.Therefore,SRCC is the ap-propriate method for calculating RCCs.展开更多
文摘Coutsourides (1980) derives an ad hoc nuisance parameter removal test for testing the equality of two multiple correlation coefficients of two independent p variate normal populations, under the assumption that a sample of size n is available from each population. He also extends his ad hoc nuisance parameter removal test to the testing of the equality of two multiple correlation matrices. This paper presents likelihood ratio tests for testing the equality of k multiple correlation coefficients, and also k partial correlation coefficients.
基金supported by the National Hi-Tech Research and Development Program of China(863 Program)(No.2006AA06Z107)the National Natural Science Foundation of China(No.40930314)
文摘Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named correlation coefficient of multidirectional standard deviations(CCMS) that is solely based on statistics. First, we prove the reliability of the proposed method using a single model and then a combination of models. The proposed method is evaluated by comparing the results with those obtained by other edge-detection methods. The CCMS method offers outstanding recognition, retains the sharpness of details, and has low sensitivity to noise. We also applied the CCMS method to Bouguer anomaly data of a potash deposit in Laos. The applicability of the CCMS method is shown by comparing the inferred tectonic framework to that inferred from remote sensing(RS) data.
文摘Real-life data introduce noise,uncertainty,and imprecision to statistical projects;it is advantageous to consider strategies to overcome these information expressions and processing problems.Neutrosophic(indeterminate)numbers can flexibly and conveniently represent the hybrid information of the partial determinacy and partial indeterminacy in an indeterminate setting,while a fuzzy multiset is a vital mathematical tool in the expression and processing of multi-valued fuzzy information with different and/or same fuzzy values.If neutrosophic numbers are introduced into fuzzy sequences in a fuzzy multiset,the introduced neutrosophic number sequences can be constructed as the neutrosophic number multiset or indeterminate fuzzy multiset.Motivated based on the idea,this study first proposes an indeterminate fuzzy multiset,where each element in a universe set can be repeated more than once with the different and/or identical indeterminate membership values.Then,we propose the parameterized correlation coefficients of indeterminate fuzzy multisets based on the de-neutrosophication of transforming indeterminate fuzzy multisets into the parameterized fuzzy multisets by a parameter(the parameterized de-neutrosophication method).Since indeterminate decision-making issues need to be handled by an indeterminate decision-making method,a group decision-making method using the weighted parameterized correlation coefficients of indeterminate fuzzy multisets is developed along with decision makers’different decision risks(small,moderate,and large risks)so as to handle multicriteria group decision-making problems in indeterminate fuzzy multiset setting.Finally,the developed group decision-making approach is used in an example on a selection problem of slope design schemes for an open-pit mine to demonstrate its usability and flexibility in the indeterminate group decision-making problem with indeterminate fuzzy multisets.
文摘In this paper, we study local influence analysis for Zhang's generalized correlation coefficients and Hotelling's generalized correlation coefficient by using approach. of local influence analysis suggested by Shi (1991), i.e., generalized influence function (GIF) and generalized Cook distance (GCD). An example is given to illustrate our results.
文摘In this simulation study, five correlation coefficients, namely, Pearson, Spearman, Kendal Tau, Permutation-based, and Winsorized were compared in terms of Type I error rate and power under different scenarios where the underlying distributions of the variables of interest, sample sizes and correlation patterns were varied. Simulation results showed that the Type I error rate and power of Pearson correlation coefficient were negatively affected by the distribution shapes especially for small sample sizes, which was much more pronounced for Spearman Rank and Kendal Tau correlation coefficients especially when sample sizes were small. In general, Permutation-based and Winsorized correlation coefficients are more robust to distribution shapes and correlation patterns, regardless of sample size. In conclusion, when assumptions of Pearson correlation coefficient are not satisfied, Permutation-based and Winsorized correlation coefficients seem to be better alternatives.
文摘The district cooling system (DCS) with ice storage can reduce the peak electricity demand of the business district buildings it serves, improve system efficiency, and lower operational costs. This study utilizes a monitoring and control platform for DCS with ice storage to analyze historical parameter values related to system operation and executed operations. We assess the distribution of cooling loads among various devices within the DCS, identify operational characteristics of the system through correlation analysis and principal component analysis (PCA), and subsequently determine key parameters affecting changes in cooling loads. Accurate forecasting of cooling loads is crucial for determining optimal control strategies. The research process can be summarized briefly as follows: data preprocessing, parameter analysis, parameter selection, and validation of load forecasting performance. The study reveals that while individual devices in the system perform well, there is considerable room for improving overall system efficiency. Six principal components have been identified as input parameters for the cold load forecasting model, with each of these components having eigenvalues greater than 1 and contributing to an accumulated variance of 87.26%, and during the dimensionality reduction process, we obtained a confidence ellipse with a 95% confidence interval. Regarding cooling load forecasting, the Relative Absolute Error (RAE) value of the light gradient boosting machine (lightGBM) algorithm is 3.62%, Relative Root Mean Square Error (RRMSE) is 42.75%, and R-squared value (R<sup>2</sup>) is 92.96%, indicating superior forecasting performance compared to other commonly used cooling load forecasting algorithms. This research provides valuable insights and auxiliary guidance for data analysis and optimizing operations in practical engineering applications. .
基金This work is supported by the National Natural Science Foundation of China.
文摘Formal change is made of the correlation coefficient(COCOEF)expression,leading to a new formula consisting of Fourier spectral coefficients that indicates a direct connection between the new form and atmospheric dynamic equations,thus resulting in a dynamic equation represented by COCOEF,which is meaningful in exploring a large-scale dynamic process in terms of the correlation field because the connection revealed by the field can have dynamic explana- tion with the aid of the new formula.
基金This research work supported and funded was provided by Vellore Institute of Technology.
文摘The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient measure(CCM)to assess the strength of the association between HFGs in this article since CCMs have a high capacity to process and interpret data.The CCM that is proposed between the HFGs has better qualities than the existing ones.It lowers restrictions on the hesitant fuzzy elements’length and may be used to establish whether the HFGs are connected negatively or favorably.Additionally,a CCMbased attribute DM approach is built into a hesitant fuzzy environment.This article suggests the use of weighted correlation coefficient measures(WCCMs)using the CCM concept to quantify the correlation between two HFGs.The decisionmaking problems of hesitancy fuzzy preference relations(HFPRs)are considered.This research proposes a new technique for assessing the relative weights of experts based on the uncertainty of HFPRs and the correlation coefficient degree of each HFPR.This paper determines the ranking order of all alternatives and the best one by using the CCMs between each option and the ideal choice.In the meantime,the appropriate example is given to demonstrate the viability of the new strategies.
文摘Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC2806102)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+2 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)。
文摘Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.
基金The National Natural Science Foundation of China(No.50776055,51076084)
文摘Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.
文摘The phenomenon of stochastic resonance (SR) based on the correlation coefficient in a parallel array of threshold devices is discussed. For four representative noises: the Gaussian noise, the uniform noise, the Laplace noise and the Cauchy noise, when the signal is subthreshold, noise can improve the correlation coefficient and SR exists. The efficacy of SR can be significantly enhanced and the maximum of the correlation coefficient can dramatically approach to one as the number of the threshold devices in the parallel array increases. Two theorems are presented to prove that SR has some robustness to noises in the parallel array. These results further extend the applicability of SR in signal processing.
基金supported by the National Key RandD Program of China(2022YFF0503703)the National Natural Science Foundation of China(through grant42127805)。
文摘Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the polar vortices,and stratospheric Planetary Waves(PWs)by analyzing and comparing their trends.Interestingly,within overall increasing trends,the duration and strength of SSWs exhibit increasing and decreasing trends before and after the winter of 2002,respectively.To reveal possible physical mechanisms driving these trends,we analyzed the long-term trends of the winter(from December to February)polar vortices and of stratospheric PWs with zonal wave number 1.Notably,our results show that in all three time periods(the entire period of 41winters,1980 to 2020,and the two subperiods—1980-2002 and 2002-2020)enhancing SSWs were always accompanied by weakening winter polar vortices and strengthening polar PWs like Stationary Planetary Waves(SPWs)and 16-day waves,and vice versa.This is the first proof,based on ERA5 long-term trend data,that weakening polar vortices and enhancing stratospheric PWs(especially SPWs)could cause an increase in SSWs.
基金Supported by the National Natural Science Foundation of China(No.62033011)Science and Technology Project of Hebei Province(No.216Z1704G,No.20310401D)。
文摘The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.
基金This work was supported in part by the Natural Science Foundation of Henan Province,and the specific grant number is 232300420301。
文摘Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points.The existing arc fault identification technology only uses the fault line signal characteristics to set the identification index,which leads to detection failure when the arc zero-off characteristic is short.To solve this problem,this paper presents an arc fault identification method by utilizing integrated signal characteristics of both the fault line and sound lines.Firstly,the waveform characteristics of the fault line and sound lines under an arc grounding fault are studied.After that,the convex hull,gradient product,and correlation coefficient index are used as the basic characteristic parameters to establish fault identification criteria.Then,the logistic regression algorithm is employed to deal with the reference samples,establish the machine discrimination model,and realize the discrimination of fault types.Finally,simulation test results and experimental results verify the accuracy of the proposed method.The comparison analysis shows that the proposed method has higher recognition accuracy,especially when the arc dissipation power is smaller than 2×10^(3) W,the zero-off period is not obvious.In conclusion,the proposed method expands the arc fault identification theory.
文摘Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 41330960)the Global Change Research Program of China (No. 2015CB953900)
文摘In order to study the temporal variations of correlations between two time series,a running correlation coefficient(RCC)could be used.An RCC is calculated for a given time window,and the window is then moved sequentially through time.The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient,calculated with the data within the time window,which we call the local running correlation coefficient(LRCC).The LRCC is calculated via the two anomalies corresponding to the two local means,meanwhile,the local means also vary.It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means.To address this problem,two unchanged means obtained from all available data are adopted to calculate an RCC,which is called the synthetic running correlation coefficient(SRCC).When the anomaly variations are dominant,the two RCCs are similar.However,when the variations of the means are dominant,the difference between the two RCCs becomes obvious.The SRCC reflects the correlations of both the anomaly variations and the variations of the means.Therefore,the SRCCs from different time points are intercomparable.A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data.The SRCC always meets this criterion,while the LRCC sometimes fails.Therefore,the SRCC is better than the LRCC for running correlations.We suggest using the SRCC to calculate the RCCs.
文摘Aim To study the reason of the insensitiveness of Pearson product-momentcorrelation coefficient as a similarity measure and the method to improve its sensitivity. MethodsExperimental and simulated data sets were used. Results The distribution range of the data setsinfluences the sensitivity of Pearson product-moment correlation coefficient. Weighted Pearsonproduct-moment correlation coefficient is more sensitive when the range of the data set is large.Conclusion Weighted Pearson product-moment correlation coefficient is necessary when the range ofthe data set is large.
基金supported partly by the National Natural Science Foundation of China(6037208130570475)the Education Ministry Doctoral Degree Foundation of China(20050141025).
文摘The problems of time delay estimation of narrowband signals are presented. The disadvantages of the existing algorithms are analyzed, and a new narrowband time delay estimating algorithm based on correlation coefficient is proposed. The original time delay information is transfered into the delay between the autocorrelation and cross-correlation function, and the precise estimating result by wave-comparison is given. The algorithm proposed here is also compared with other algorithms and its advantages over other algorithms are proved. The theoretical analysis and simulation show the effectiveness of the proposed algorithm.
基金This study was supported by the National Natural Sci-ence Foundation of China(Nos.41976022,41941012)the Major Scientific and Technological Innovation Projects of Shandong Province(No.2018SDKJ0104-1).
文摘The running correlation coefficient(RCC)is useful for capturing temporal variations in correlations between two time series.The local running correlation coefficient(LRCC)is a widely used algorithm that directly applies the Pearson correlation to a time window.A new algorithm called synthetic running correlation coefficient(SRCC)was proposed in 2018 and proven to be rea-sonable and usable;however,this algorithm lacks a theoretical demonstration.In this paper,SRCC is proven theoretically.RCC is only meaningful when its values at different times can be compared.First,the global means are proven to be the unique standard quantities for comparison.SRCC is the only RCC that satisfies the comparability criterion.The relationship between LRCC and SRCC is derived using statistical methods,and SRCC is obtained by adding a constraint condition to the LRCC algorithm.Dividing the temporal fluctuations into high-and low-frequency signals reveals that LRCC only reflects the correlation of high-frequency signals;by contrast,SRCC reflects the correlations of high-and low-frequency signals simultaneously.Therefore,SRCC is the ap-propriate method for calculating RCCs.