In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the fre...In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.展开更多
The difficulties associated with performing direct compression strength tests on rocks lead to the development of indirect test methods for the rock strength assessment. Indirect test methods are simple, more economic...The difficulties associated with performing direct compression strength tests on rocks lead to the development of indirect test methods for the rock strength assessment. Indirect test methods are simple, more economical, less time-consuming, and easily adaptable to the field. The main aim of this study was to derive correlations between direct and indirect test methods for basalt and rhyolite rock types from Carlin trend deposits in Nevada. In the destructive methods, point load index, block punch index, and splitting tensile strength tests are performed. In the non-destructive methods, Schmidt hammer and ultrasonic pulse velocity tests are performed. Correlations between the direct and indirect compression strength tests are developed using linear and nonlinear regression analysis methods. The results show that the splitting tensile strength has the best correlation with the uniaxial compression strength.Furthermore, the Poisson's ratio has no correlation with any of the direct and indirect test results.展开更多
The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation dur...The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.展开更多
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation f...In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.展开更多
Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data a...Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data are available while the actual excitations (such aswind/wave load) are not measurable. Modal parameters estimation must base itself on response-onlydata. Over the past years, many time-domain modal parameter identification techniques fromoutput-only are proposed. A poly-reference frequency-domain modal identification scheme onresponse-only is presented. It is based on coupling the cross-correlation theory with conventionalfrequency-domain modal parameter extraction. An experiment using an airplane model is performed toverify the proposed method.展开更多
Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residu...Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.展开更多
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the gird...To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.展开更多
This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( ...This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( Venice,Italy). Ambient vibration tests were carried out to determine the dynamic characteristics of the bridge and more than 20 modes were identified in the frequency range 0~10Hz. In the theoretical study,a 3D FE model of the bridge was developed using an integrated CAD-FEA approach; subsequently,the information obtained from the field tests,combined with simple manual tuning,provided a linear elastic model,accurately fitting the modal parameters of the bridge in its present condition.展开更多
Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The corr...Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575160,91636221,and 11605065)
文摘In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.
基金CDC/NIOSH for their partial funding of this work
文摘The difficulties associated with performing direct compression strength tests on rocks lead to the development of indirect test methods for the rock strength assessment. Indirect test methods are simple, more economical, less time-consuming, and easily adaptable to the field. The main aim of this study was to derive correlations between direct and indirect test methods for basalt and rhyolite rock types from Carlin trend deposits in Nevada. In the destructive methods, point load index, block punch index, and splitting tensile strength tests are performed. In the non-destructive methods, Schmidt hammer and ultrasonic pulse velocity tests are performed. Correlations between the direct and indirect compression strength tests are developed using linear and nonlinear regression analysis methods. The results show that the splitting tensile strength has the best correlation with the uniaxial compression strength.Furthermore, the Poisson's ratio has no correlation with any of the direct and indirect test results.
基金This study was supported financially by the National Key Research and Development Program of China(Grant no.2018YFA0605902)the National Natural Science Foundation of China(Grant no.52101300)+1 种基金the Fundamental Research Funds for the Central Universities(Grant no.DUT21LK03)Joint Scientific Research Fund Project of DBJI(Grant no.ICR2102).
文摘The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.
基金Item of the 9-th F ive Plan of the Aeronautical Industrial Corporation
文摘In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.
基金This project is supported by Aeronautics Foundation (No. 1152059), Civil Aviation Foundation (No.1007-272) the 9-th Five Plan of the Aeronautical Industrial Corporation (No.62.2.2.1), China.
文摘Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data are available while the actual excitations (such aswind/wave load) are not measurable. Modal parameters estimation must base itself on response-onlydata. Over the past years, many time-domain modal parameter identification techniques fromoutput-only are proposed. A poly-reference frequency-domain modal identification scheme onresponse-only is presented. It is based on coupling the cross-correlation theory with conventionalfrequency-domain modal parameter extraction. An experiment using an airplane model is performed toverify the proposed method.
基金Project was supported by the National Natural Science Foundation of China(Grant No.52165034)Science and Technology Programs of Inner Mongolia(Grant No.2020GG0301)+1 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2019MS05061)Scientific Research Projects of Higher Education of Inner Mongolia Autonomous Region Institutions(Grant No.NJZY20066).
文摘Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.
基金Project(50608008) supported by the National Natural Science Foundation of Chinaproject(20050536002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.
基金support provided by the Italian Ministry of University and Research,under the grant PRIN 2006
文摘This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( Venice,Italy). Ambient vibration tests were carried out to determine the dynamic characteristics of the bridge and more than 20 modes were identified in the frequency range 0~10Hz. In the theoretical study,a 3D FE model of the bridge was developed using an integrated CAD-FEA approach; subsequently,the information obtained from the field tests,combined with simple manual tuning,provided a linear elastic model,accurately fitting the modal parameters of the bridge in its present condition.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (No.6821001005)
文摘Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.