In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and t...In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.展开更多
An analysis of the reproducibility from signal record bioelectric heart activity is presented. The measurements were carried out with a recently patented medical device, which one is able to record the curves of press...An analysis of the reproducibility from signal record bioelectric heart activity is presented. The measurements were carried out with a recently patented medical device, which one is able to record the curves of pressure arterial and venous as those obtained using the gold standard technique in these evaluations, the cardiac catheterization technique. The measurements were carried out 15 health subjects and patients;each one was measured 5 times in order to have auto-correlations and correlations of these records. Analysis indicates correlations from 0.9 to 1 as long as p values were below 0.05. It is indicated an excellent reproducibility of evaluated patients.展开更多
基金the National Natural Science Foundation of China(2117613621422603)the National Science and Technology Support Program of China(2011BAC06B01)
文摘In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.
文摘An analysis of the reproducibility from signal record bioelectric heart activity is presented. The measurements were carried out with a recently patented medical device, which one is able to record the curves of pressure arterial and venous as those obtained using the gold standard technique in these evaluations, the cardiac catheterization technique. The measurements were carried out 15 health subjects and patients;each one was measured 5 times in order to have auto-correlations and correlations of these records. Analysis indicates correlations from 0.9 to 1 as long as p values were below 0.05. It is indicated an excellent reproducibility of evaluated patients.