期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Relative ordering of square-norm distance correlations in open quantum systems
1
作者 吴韬 宋学科 叶柳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期12-16,共5页
We investigate the square-norm distance correlation dynamics of the Bell-diagonal states under different local deco- herence channels, including phase flip, bit flip, and bit-phase flip channels by employing the geome... We investigate the square-norm distance correlation dynamics of the Bell-diagonal states under different local deco- herence channels, including phase flip, bit flip, and bit-phase flip channels by employing the geometric discord (GD) and its modified geometric discord (MGD), as the measures of the square-norm distance correlations. Moreover, an explicit comparison between them is made in detail. The results show that there is no distinct dominant relative ordering between them. Furthermore, we obtain that the GD just gradually deceases to zero, while MGD initially has a large freezing interval, and then suddenly changes in evolution. The longer the freezing interval, the less the MGD is. Interestingly, it is shown that the dynamic behaviors of the two geometric discords under the three noisy environments for the Werner-type initial states are the same. 展开更多
关键词 DECOHERENCE geometric discord modified geometric discord trace distance correlation
下载PDF
The penetrating depth analysis of Lunar Penetrating Radar onboard Chang'e-3 rover 被引量:4
2
作者 Shu-Guo Xing Yan Su +4 位作者 Jian-Qing Feng Shun Dai Yuan Xiao Chun-Yu Ding Chun-Lai Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第5期79-90,共12页
Lunar Penetrating Radar(LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within... Lunar Penetrating Radar(LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within the effective detection range and contribute to distinguishing useful echoes from noise.First, this study introduces two traditional methods, both based on a radar transmission equation, to calculate the penetrating depth. The only difference between the two methods is that the first method adopts system calibration parameters given in the calibration report and the second one uses high-voltage-off radar data. However, some prior knowledge and assumptions are needed in the radar equation and the accuracy of assumptions will directly influence the final results. Therefore, a new method termed the Correlation Coefficient Method(CCM) is provided in this study, which is only based on radar data without any a priori assumptions. The CCM can obtain the penetrating depth according to the different correlation between reflected echoes and noise. To be exact, there is a strong correlation in the useful reflected echoes and a random correlation in the noise between adjacent data traces. In addition, this method can acquire a variable penetrating depth along the profile of the rover, but only one single depth value can be obtained from traditional methods. Through a simulation, the CCM has been verified as an effective method to obtain penetration depth. The comparisons and analysis of the calculation results of these three methods are also implemented in this study. Finally, results show that the ultimate penetrating depth of Channel 1 and the estimated penetrating depth of Channel 2 range from 136.9 m to 165.5 m(ε_r = 6.6) and from 13.0 m to 17.5 m(ε_r = 2.3), respectively. 展开更多
关键词 penetrating Lunar rover lunar assumptions calibration ultimate traces correlation verified
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部