Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecul...Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecular structure by introducing self-adaptability regulation mechanism and the idea of orientating to customers. Characterizing the structures of 25 bisphenol A compounds by this vector, the QSAR models of three kinds of estrogen activities (ER affinities, gene induction and cell proliferation) have high multiple correlation coefficient (Rcum^2=0.933, 0.813, 0.959) and cross verification coefficient (Qcum^2=0.847, 0.953, 0.798) by support vector machine (SVM), which suits for nonlinear circumstances. The above results show that the models successfully express the correlation between structure and three kinds of estrogen activities. Therefore, 3D-VAPC exactly reflects the molecular structural information and SVM method correctly describes the correlation between information and property of the compounds.展开更多
In this letter, the preparation of three ZrO2 phases has beed briefly described and their catalytic results have been presented for CO hydrogenation to olefin. These catalysts had a good selectivity for light olefin. ...In this letter, the preparation of three ZrO2 phases has beed briefly described and their catalytic results have been presented for CO hydrogenation to olefin. These catalysts had a good selectivity for light olefin. Monoclinic ZrO2 catalyst had a high selectivity for isobutene, while the other phase catalysts had not展开更多
The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operat...The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operating conditions.The physicochemical properties of aerospace fuels are directly infl uenced by chemical composition.Thus,a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future.This work summarized the eff ects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties,including density,net heat of combustion(NHOC),low-temperature fl uidity(viscosity and freezing point),fl ash point,and thermal-oxidative stability.Several correlations and predictions of fuel properties from chemical composition were reviewed.Additionally,we correlated the fuel properties with hydrogen/carbon molar ratios(n H/C)and molecular weight(M).The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density,NHOC,viscosity and eff ectiveness for the design,manufacture,and evaluation of aviation hydrocarbon fuels.展开更多
The thermodynamic properties of metamizol monohydrate in pure solvents(methanol,ethanol,n-propanol and isopropanol) and two binary mixed solvent systems including(methanol+ethanol) and(methanol+isopropanol) were measu...The thermodynamic properties of metamizol monohydrate in pure solvents(methanol,ethanol,n-propanol and isopropanol) and two binary mixed solvent systems including(methanol+ethanol) and(methanol+isopropanol) were measured from 283.15 K to 313.15 K by gravimetric method under atmospheric pressure thought as 0.1 MPa.The modi fied Apelblat equation,the CNIBS/R-K equation,the Hybrid model and the NRTL model were used to correlate the solubility of metamizol monohydrate,respectively.The results show that the solubility of metamizol monohydrate in all the tested solvents increases with the rising temperature which means that it has temperature dependence.What's more,the effects of solvent components of the binary solvent mixtures on solubility were discussed,it illustrates that the increasing of the molar fraction of methanol gives the system a greater dissolving power.Furthermore,according to the NRTL model,the enthalpy,the Gibbs energy and the entropy of the mixing process were also obtained and discussed.展开更多
We have derived the analytical expression of the electric cross-spectral density in the near- field of partially coherent vortex beams diffracted by an aperture. Taking the Caussian Schell-model vortex beam as a typic...We have derived the analytical expression of the electric cross-spectral density in the near- field of partially coherent vortex beams diffracted by an aperture. Taking the Caussian Schell-model vortex beam as a typical example of partially coherent vortex beams, the spatial correlation properties and correlation vortices in the near-field of partially coherent vortex beams diffracted by a rectangle aperture are studied. It is shown that the off-axis displacement, spatial degree of coherence parameter, propagation distance, and the opening factor of the aperture affect the spectral degree of coherence and positions of correlation vortices. With the optimization algorithm, we obtain the symmetric distributing coherent vortex.展开更多
The importance of accurate determination of the critical properties of plus fractions in prediction of phase behaviour of hydrocarbon mixtures by equations of state is well known in the petroleum industry. It has been...The importance of accurate determination of the critical properties of plus fractions in prediction of phase behaviour of hydrocarbon mixtures by equations of state is well known in the petroleum industry. It has been stated in various papers (Elsharkawy, 2001) that using the plus fraction as a single group in equation of state calculations reduces the accuracy of the results. However in this work it has been shown that using the proper values of critical temperature and pressure for the plus fraction group can estimate the properties of hydrocarbon mixtures, and they are accurate enough to be used in reservoir engineering and enhanced oil recovery calculations. In this paper, a new method is proposed for calculating the critical properties of plus fractions of petroleum fluids. One can use this method either in predicting critical pressure and temperature of single carbon numbers (SCNs) after the splitting process or in predicting critical pressure and temperature of the plus fraction as a single group. A comparison study is performed against Riazi-Daubert correlation (Riazi and Daubert, 1987) and Sancet correlations (Sancet, 2007) for 25 oil samples taken from 14 fields from southwest Iran. The results indicate the superiority of the proposed method to the Riazi-Daubert and Sancet correlations.展开更多
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-...The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile(Ch-HPQ) thin films were determined in the frequency range of 0.5 k Hz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping(CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.展开更多
Ligand engineering for well-defined gold nanoclusters(Au NCs) is getting more extensive attention. Organizing the Au-ligand interfaces on gold NCs can achieve the structural and functional control. This review focuses...Ligand engineering for well-defined gold nanoclusters(Au NCs) is getting more extensive attention. Organizing the Au-ligand interfaces on gold NCs can achieve the structural and functional control. This review focuses on the Au-ligand interfaces including gold-phosphorus(Au-P), gold-sulfur(Au-S), gold-selenium(Au-Se), gold-carbon(Au-C), and gold-nitrogen(Au-N), derived from the bonding between Au atoms and the different ligands(e.g., organic phosphine, thiolate, selenolate, alkynyl,n-heterocyclic carbene and nitrogenous ligands). The formation mechanism of Au-ligand interfaces is well discussed. In addition, the effects of Au-ligand interfaces on the stability, optical property, and catalysis are also presented. We hope the advances in this research area can boost the development of Au NC sciences.展开更多
The new signature of liquid-gas phase transition has been well indicated by the higher-order fluctuations of the largest fragment charge,but the uncertainties of critical temperatures based on this signature have not ...The new signature of liquid-gas phase transition has been well indicated by the higher-order fluctuations of the largest fragment charge,but the uncertainties of critical temperatures based on this signature have not been revealed.This study extracts the critical temperatures of liquid-gas phase transition in nuclear reactions and investigates their uncertainties.Utilizing the isospin-dependent quantum molecular dynamics model in conjunction with the statistical model GEMINI enables us to describe the dynamical path from the initial to the final state.An isotope thermometer and a quantum fluctuation thermometer are employed to extract the nuclear temperature.The higher-order fluctuations of the largest fragment charge and critical temperatures are studied in^(124)Sn+^(120)Sn collisions ranging from 400 to 1000 MeV/nucleon and^(124)Sn+AZ collisions at 600 MeV/nucleon.Observations revealed that the pseudo-critical point is robustly indicated by the higher-order fluctuations of the largest fragment charge.The critical temperatures extracted by the isotope thermometer are relatively consistent,with an uncertainty of 15%,while those obtained by the quantum fluctuation thermometer are heavily influenced by the incident energy and mass number of target nuclei.The excitation energy E∗and bound charge Zbound are used for event-sorting.These two ensembles represent the statistical properties of the initial and final states of the system,respectively.The initial-final correlations of statistical properties might lead to two phenomena.First,the size distribution of the largest fragment at the pseudo-critical point based on the Zbound ensemble is wide,while that based on E∗ensemble exhibits bimodality,which is a typical characteristic in the liquid-gas coexistence of a finite system.Second,the temperature at the pseudo-critical point based on the Zbound ensemble is higher than that based on the E∗ensemble.Furthermore,the projectile-like system exhibits a significant dynamical effect in its evolution path from the initial to final state,closely associated with the fluctuation of critical temperature.展开更多
As a great challenge of network virtualization, virtual network embedding/mapping is increasingly important. It aims to successfully and efficiently assign the nodes and links of a virtual network (VN) onto a shared...As a great challenge of network virtualization, virtual network embedding/mapping is increasingly important. It aims to successfully and efficiently assign the nodes and links of a virtual network (VN) onto a shared substrate network. The problem has been proved to be NP-hard and some heuristic algorithms have been proposed. However, most of the algorithms use only the local information of a node, such as CPU capacity and bandwidth, to determine how to map a VN, without considering the top- ological attributes which may pose significant impact on the performance of the embedding. In this paper, a new embedding algorithm is proposed based on real-time topological attributes. The concept ofbetweenness centrality in graph theory is borrowed to sort the nodes of VNs, and the nodes of the substrate network are sorted according to the correlation properties between the former selected and unselected nodes. In this way, node mapping and link mapping can be well coupled. A simulator is built to evaluate the performance of the proposed virtual network embedding (VNE) algorithm. The results show that the new algorithm significantly increases the revenue/cost (R/C) ratio and acceptance ratio as well as reduces the runtime.展开更多
We present lithofacies classifications for a tight gas sandstone reservoir by analyzing hierarchies of heterogeneities.We use principal component analysis(PCA)to overcome the two level of heterogeneities,which results...We present lithofacies classifications for a tight gas sandstone reservoir by analyzing hierarchies of heterogeneities.We use principal component analysis(PCA)to overcome the two level of heterogeneities,which results in a better lithofacies classification than the traditional cutoff method.The classical volumetric method is used for estimating oil/gas in-place resources in the petroleum industry since its inception is not accurate because it ignores the heterogeneities of and correlation between the petrophysical properties.We present the importance and methods of accounting for the heterogeneities of and correlation between petrophysical properties for more accurate hydrocarbon volumetric estimations.We also demonstrate the impacts of modeling the heterogeneities and correlation in porosity and hydrocarbon saturation for hydrocarbon volumetric estimations with a tight sandstone gas reservoir.Furthermore,geoscientists have traditionally considered that small-scale heterogeneities only impact subsurface fluid flow,but not impact the hydrocarbon resource volumetric estimation.We show the importance of modeling small-scale heterogeneities using fine cell size in reservoir modeling of unconventional resources for accurate resource assessment.展开更多
In this report, we find the MBH estimated from the formalism of Wang et al. are more consistent with those from the MBH-δ, relation than those from previous single-epoch mass estimators, using a large sample of AGNs....In this report, we find the MBH estimated from the formalism of Wang et al. are more consistent with those from the MBH-δ, relation than those from previous single-epoch mass estimators, using a large sample of AGNs. Furthermore, we examine the differences between the line widths of Hβ and Mg II in detail by comparing their line profiles. The flux around the line core and that in the wing of both Hβ and Mg II show an opposite variation tendency, which indicates the BLR is multi-componential. The contribution of the wing makes the FWHM deviate from δline, and thus bias the MBH estimated from previous single-epoch mass estimators. Thus the correction on the formalism suggested by Wang et al. is crucial to MBn estimation.展开更多
We present a tentative constraint on cosmological parameters Ω_(m) and σ_(8) from a joint analysis of galaxy clustering and galaxygalaxy lensing from DESI Legacy Imaging Surveys Data Release 9(DR9),covering approxim...We present a tentative constraint on cosmological parameters Ω_(m) and σ_(8) from a joint analysis of galaxy clustering and galaxygalaxy lensing from DESI Legacy Imaging Surveys Data Release 9(DR9),covering approximately 10000 square degrees and spanning the redshift range of 0.1 to 0.9.To study the dependence of cosmological parameters on lens redshift,we divide lens galaxies into seven approximately volume-limited samples,each with an equal width in photometric redshift.To retrieve the intrinsic projected correlation function w_(p)(r_(p))from the lens samples,we employ a novel method to account for redshift uncertainties.Additionally,we measured the galaxy-galaxy lensing signal ΔΣ(r_(p))for each lens sample,using source galaxies selected from the shear catalog by applying our Fourier Quad pipeline to DR9 images.We model these observables within the flatΛCDM framework,employing the minimal bias model.To ensure the reliability of the minimal bias model,we apply conservative scale cuts:r_(p)>8 and 12 h^(-1)Mpc,for w_(p)(r_(p))and ΔΣ(r_(p)),respectively.Our findings suggest a mild tendency that S_(8)=σ_(8)√Ω_(m)/0.3increases with lens redshift,although this trend is only marginally significant.When we combine low redshift samples,the value of S8is determined to be 0.84±0.02,consistent with the Planck results but significantly higher than the 3×2 pt analysis by 2-5σ.Despite the fact that further refinements in measurements and modeling could improve the accuracy of our results,the consistency with standard values demonstrates the potential of our method for more precise and accurate cosmology in the future.展开更多
基金This work was supported by the Natural Science Foundation of CQ CSTC (No. 2006BB5177)
文摘Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecular structure by introducing self-adaptability regulation mechanism and the idea of orientating to customers. Characterizing the structures of 25 bisphenol A compounds by this vector, the QSAR models of three kinds of estrogen activities (ER affinities, gene induction and cell proliferation) have high multiple correlation coefficient (Rcum^2=0.933, 0.813, 0.959) and cross verification coefficient (Qcum^2=0.847, 0.953, 0.798) by support vector machine (SVM), which suits for nonlinear circumstances. The above results show that the models successfully express the correlation between structure and three kinds of estrogen activities. Therefore, 3D-VAPC exactly reflects the molecular structural information and SVM method correctly describes the correlation between information and property of the compounds.
文摘In this letter, the preparation of three ZrO2 phases has beed briefly described and their catalytic results have been presented for CO hydrogenation to olefin. These catalysts had a good selectivity for light olefin. Monoclinic ZrO2 catalyst had a high selectivity for isobutene, while the other phase catalysts had not
基金This work was supported by the Scientific Research Projects of the Ministry of Education of China(6141A02033522)the National Natural Science Foundation of China(No.21978200).
文摘The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operating conditions.The physicochemical properties of aerospace fuels are directly infl uenced by chemical composition.Thus,a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future.This work summarized the eff ects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties,including density,net heat of combustion(NHOC),low-temperature fl uidity(viscosity and freezing point),fl ash point,and thermal-oxidative stability.Several correlations and predictions of fuel properties from chemical composition were reviewed.Additionally,we correlated the fuel properties with hydrogen/carbon molar ratios(n H/C)and molecular weight(M).The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density,NHOC,viscosity and eff ectiveness for the design,manufacture,and evaluation of aviation hydrocarbon fuels.
基金Supported by National Natural Science Foundation of China(21206109)China Ministry of Science and Major National Scientific Instrument Development Project(21527812)
文摘The thermodynamic properties of metamizol monohydrate in pure solvents(methanol,ethanol,n-propanol and isopropanol) and two binary mixed solvent systems including(methanol+ethanol) and(methanol+isopropanol) were measured from 283.15 K to 313.15 K by gravimetric method under atmospheric pressure thought as 0.1 MPa.The modi fied Apelblat equation,the CNIBS/R-K equation,the Hybrid model and the NRTL model were used to correlate the solubility of metamizol monohydrate,respectively.The results show that the solubility of metamizol monohydrate in all the tested solvents increases with the rising temperature which means that it has temperature dependence.What's more,the effects of solvent components of the binary solvent mixtures on solubility were discussed,it illustrates that the increasing of the molar fraction of methanol gives the system a greater dissolving power.Furthermore,according to the NRTL model,the enthalpy,the Gibbs energy and the entropy of the mixing process were also obtained and discussed.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2009450159)the Foundation of the State Key Laboratory of Optical Technologies for Micro-Frabrication & Micro-Engineering, Chinese Academy of Sciences (Grant No. KF001)
文摘We have derived the analytical expression of the electric cross-spectral density in the near- field of partially coherent vortex beams diffracted by an aperture. Taking the Caussian Schell-model vortex beam as a typical example of partially coherent vortex beams, the spatial correlation properties and correlation vortices in the near-field of partially coherent vortex beams diffracted by a rectangle aperture are studied. It is shown that the off-axis displacement, spatial degree of coherence parameter, propagation distance, and the opening factor of the aperture affect the spectral degree of coherence and positions of correlation vortices. With the optimization algorithm, we obtain the symmetric distributing coherent vortex.
文摘The importance of accurate determination of the critical properties of plus fractions in prediction of phase behaviour of hydrocarbon mixtures by equations of state is well known in the petroleum industry. It has been stated in various papers (Elsharkawy, 2001) that using the plus fraction as a single group in equation of state calculations reduces the accuracy of the results. However in this work it has been shown that using the proper values of critical temperature and pressure for the plus fraction group can estimate the properties of hydrocarbon mixtures, and they are accurate enough to be used in reservoir engineering and enhanced oil recovery calculations. In this paper, a new method is proposed for calculating the critical properties of plus fractions of petroleum fluids. One can use this method either in predicting critical pressure and temperature of single carbon numbers (SCNs) after the splitting process or in predicting critical pressure and temperature of the plus fraction as a single group. A comparison study is performed against Riazi-Daubert correlation (Riazi and Daubert, 1987) and Sancet correlations (Sancet, 2007) for 25 oil samples taken from 14 fields from southwest Iran. The results indicate the superiority of the proposed method to the Riazi-Daubert and Sancet correlations.
文摘The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile(Ch-HPQ) thin films were determined in the frequency range of 0.5 k Hz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping(CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.
基金supported by the Jiangsu Natural Science Foundation of China(BK20230329)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB150026)+1 种基金the Foundation of the National Natural Science Foundation of China(21802070 and 2217816)the National Key R&D Program of China(2018YFE0122600)。
文摘Ligand engineering for well-defined gold nanoclusters(Au NCs) is getting more extensive attention. Organizing the Au-ligand interfaces on gold NCs can achieve the structural and functional control. This review focuses on the Au-ligand interfaces including gold-phosphorus(Au-P), gold-sulfur(Au-S), gold-selenium(Au-Se), gold-carbon(Au-C), and gold-nitrogen(Au-N), derived from the bonding between Au atoms and the different ligands(e.g., organic phosphine, thiolate, selenolate, alkynyl,n-heterocyclic carbene and nitrogenous ligands). The formation mechanism of Au-ligand interfaces is well discussed. In addition, the effects of Au-ligand interfaces on the stability, optical property, and catalysis are also presented. We hope the advances in this research area can boost the development of Au NC sciences.
基金Supported by the National Natural Science Foundation of China (11875328, 12075327)the Key Laboratory of Nuclear Data foundation (JCKY2022201C157)the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (22lgqb39)。
文摘The new signature of liquid-gas phase transition has been well indicated by the higher-order fluctuations of the largest fragment charge,but the uncertainties of critical temperatures based on this signature have not been revealed.This study extracts the critical temperatures of liquid-gas phase transition in nuclear reactions and investigates their uncertainties.Utilizing the isospin-dependent quantum molecular dynamics model in conjunction with the statistical model GEMINI enables us to describe the dynamical path from the initial to the final state.An isotope thermometer and a quantum fluctuation thermometer are employed to extract the nuclear temperature.The higher-order fluctuations of the largest fragment charge and critical temperatures are studied in^(124)Sn+^(120)Sn collisions ranging from 400 to 1000 MeV/nucleon and^(124)Sn+AZ collisions at 600 MeV/nucleon.Observations revealed that the pseudo-critical point is robustly indicated by the higher-order fluctuations of the largest fragment charge.The critical temperatures extracted by the isotope thermometer are relatively consistent,with an uncertainty of 15%,while those obtained by the quantum fluctuation thermometer are heavily influenced by the incident energy and mass number of target nuclei.The excitation energy E∗and bound charge Zbound are used for event-sorting.These two ensembles represent the statistical properties of the initial and final states of the system,respectively.The initial-final correlations of statistical properties might lead to two phenomena.First,the size distribution of the largest fragment at the pseudo-critical point based on the Zbound ensemble is wide,while that based on E∗ensemble exhibits bimodality,which is a typical characteristic in the liquid-gas coexistence of a finite system.Second,the temperature at the pseudo-critical point based on the Zbound ensemble is higher than that based on the E∗ensemble.Furthermore,the projectile-like system exhibits a significant dynamical effect in its evolution path from the initial to final state,closely associated with the fluctuation of critical temperature.
基金Project supported by the National Basic Research Program (973) of China (No. 2012CB315801), the National Natural Science Foundation of China (Nos. 61302089 and 61300184), and the Fundamental Research Funds for the Central Universities, China (No. 2013RC0113)
文摘As a great challenge of network virtualization, virtual network embedding/mapping is increasingly important. It aims to successfully and efficiently assign the nodes and links of a virtual network (VN) onto a shared substrate network. The problem has been proved to be NP-hard and some heuristic algorithms have been proposed. However, most of the algorithms use only the local information of a node, such as CPU capacity and bandwidth, to determine how to map a VN, without considering the top- ological attributes which may pose significant impact on the performance of the embedding. In this paper, a new embedding algorithm is proposed based on real-time topological attributes. The concept ofbetweenness centrality in graph theory is borrowed to sort the nodes of VNs, and the nodes of the substrate network are sorted according to the correlation properties between the former selected and unselected nodes. In this way, node mapping and link mapping can be well coupled. A simulator is built to evaluate the performance of the proposed virtual network embedding (VNE) algorithm. The results show that the new algorithm significantly increases the revenue/cost (R/C) ratio and acceptance ratio as well as reduces the runtime.
基金supported by the Important National Science Technology Specific Projects of China(No.2016ZX05010-001-003).
文摘We present lithofacies classifications for a tight gas sandstone reservoir by analyzing hierarchies of heterogeneities.We use principal component analysis(PCA)to overcome the two level of heterogeneities,which results in a better lithofacies classification than the traditional cutoff method.The classical volumetric method is used for estimating oil/gas in-place resources in the petroleum industry since its inception is not accurate because it ignores the heterogeneities of and correlation between the petrophysical properties.We present the importance and methods of accounting for the heterogeneities of and correlation between petrophysical properties for more accurate hydrocarbon volumetric estimations.We also demonstrate the impacts of modeling the heterogeneities and correlation in porosity and hydrocarbon saturation for hydrocarbon volumetric estimations with a tight sandstone gas reservoir.Furthermore,geoscientists have traditionally considered that small-scale heterogeneities only impact subsurface fluid flow,but not impact the hydrocarbon resource volumetric estimation.We show the importance of modeling small-scale heterogeneities using fine cell size in reservoir modeling of unconventional resources for accurate resource assessment.
基金supported by the National Basic Research Program of China(Grant No.2009CB824800)the National Natural Science Foundation of China(Grant Nos.11303085,11073019,10973034,11033007,11133006 and 11103071)the Western Light Youth Project
文摘In this report, we find the MBH estimated from the formalism of Wang et al. are more consistent with those from the MBH-δ, relation than those from previous single-epoch mass estimators, using a large sample of AGNs. Furthermore, we examine the differences between the line widths of Hβ and Mg II in detail by comparing their line profiles. The flux around the line core and that in the wing of both Hβ and Mg II show an opposite variation tendency, which indicates the BLR is multi-componential. The contribution of the wing makes the FWHM deviate from δline, and thus bias the MBH estimated from previous single-epoch mass estimators. Thus the correction on the formalism suggested by Wang et al. is crucial to MBn estimation.
基金supported by the National Key Basic Research and Development Program of China(Grant No.2018YFA0404504)National Natural Science Foundation of China(Grant Nos.11833005,11890691,11890692,11533006,11621303,and 12073017)+5 种基金Shanghai Natural Science Foundation(Grant No.15ZR1446700)111 Project(Grant No.B20019)the science research grants from the China Manned Space Project(Grant Nos.CMS-CSST-2021-A01,and CMS-CSST-2021-A02)the support from the National Natural Science Foundation of China(Grant No.11933002)the Innovation Program 2019-01-07-00-02-E00032 of Shanghai Municipal Education Commissionthe science research grants from the China Manned Space Project(Grant No.CMS-CSST-2021-A01)。
文摘We present a tentative constraint on cosmological parameters Ω_(m) and σ_(8) from a joint analysis of galaxy clustering and galaxygalaxy lensing from DESI Legacy Imaging Surveys Data Release 9(DR9),covering approximately 10000 square degrees and spanning the redshift range of 0.1 to 0.9.To study the dependence of cosmological parameters on lens redshift,we divide lens galaxies into seven approximately volume-limited samples,each with an equal width in photometric redshift.To retrieve the intrinsic projected correlation function w_(p)(r_(p))from the lens samples,we employ a novel method to account for redshift uncertainties.Additionally,we measured the galaxy-galaxy lensing signal ΔΣ(r_(p))for each lens sample,using source galaxies selected from the shear catalog by applying our Fourier Quad pipeline to DR9 images.We model these observables within the flatΛCDM framework,employing the minimal bias model.To ensure the reliability of the minimal bias model,we apply conservative scale cuts:r_(p)>8 and 12 h^(-1)Mpc,for w_(p)(r_(p))and ΔΣ(r_(p)),respectively.Our findings suggest a mild tendency that S_(8)=σ_(8)√Ω_(m)/0.3increases with lens redshift,although this trend is only marginally significant.When we combine low redshift samples,the value of S8is determined to be 0.84±0.02,consistent with the Planck results but significantly higher than the 3×2 pt analysis by 2-5σ.Despite the fact that further refinements in measurements and modeling could improve the accuracy of our results,the consistency with standard values demonstrates the potential of our method for more precise and accurate cosmology in the future.