Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resu...Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.展开更多
Although data-independent acquisition (DIA) shows powerful potential in achieving comprehensive peptide information acquisition, the difficulty in determining the precursor m/z and distinguishing fragment ions has pos...Although data-independent acquisition (DIA) shows powerful potential in achieving comprehensive peptide information acquisition, the difficulty in determining the precursor m/z and distinguishing fragment ions has posed challenges in DIA data analysis. To address this challenge, a common approach is to recover the correspondence between precursor ions and fragment ions, followed by peptide identification using traditional data-dependent acquisition (DDA) database searching. In this study, we propose a cosine similarity-based deconvolution method that rapidly establishes the correspondence between chromatographic profiles of precursor ions and fragment ions through matrix calculations. Experimental results demonstrate that our method, referred to as CosDIA, yields a peptide identification count close to that of DIA-umpire. However, compared to DIA-umpire, we can establish the correspondence between original MS/MS spectra and pseudo-MS/MS spectra. Furthermore, compared to the CorrDIA method, our approach achieves higher efficiency in terms of time, reducing the time cost of the analysis process. These results highlight the potential advantages of the CosDIA method in DIA data analysis, providing a powerful tool and method for large-scale proteomics research.展开更多
Based on the coded and non-coded targets, the targets are extracted from the images according to their size, shape and intensity etc., and thus an improved method to identify the unique identity(D) of every coded ta...Based on the coded and non-coded targets, the targets are extracted from the images according to their size, shape and intensity etc., and thus an improved method to identify the unique identity(D) of every coded target is put forward and the non-coded and coded targets are classified. Moreover, the gray scale centroid algorithm is applied to obtain the subpixel location of both uncoded and coded targets. The initial matching of the uncoded target correspondences between an image pair is established according to similarity and compatibility, which are based on the ID correspondences of the coded targets. The outliers in the initial matching of the uncoded target are eliminated according to three rules to finally obtain the uncoded target correspondences. Practical examples show that the algorithm is rapid, robust and is of high precision and matching ratio.展开更多
基金Supported by the Zimin Institute for Engineering Solutions Advancing Better Lives。
文摘Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.
文摘Although data-independent acquisition (DIA) shows powerful potential in achieving comprehensive peptide information acquisition, the difficulty in determining the precursor m/z and distinguishing fragment ions has posed challenges in DIA data analysis. To address this challenge, a common approach is to recover the correspondence between precursor ions and fragment ions, followed by peptide identification using traditional data-dependent acquisition (DDA) database searching. In this study, we propose a cosine similarity-based deconvolution method that rapidly establishes the correspondence between chromatographic profiles of precursor ions and fragment ions through matrix calculations. Experimental results demonstrate that our method, referred to as CosDIA, yields a peptide identification count close to that of DIA-umpire. However, compared to DIA-umpire, we can establish the correspondence between original MS/MS spectra and pseudo-MS/MS spectra. Furthermore, compared to the CorrDIA method, our approach achieves higher efficiency in terms of time, reducing the time cost of the analysis process. These results highlight the potential advantages of the CosDIA method in DIA data analysis, providing a powerful tool and method for large-scale proteomics research.
基金The National Natural Science Foundation of China(No50475041)
文摘Based on the coded and non-coded targets, the targets are extracted from the images according to their size, shape and intensity etc., and thus an improved method to identify the unique identity(D) of every coded target is put forward and the non-coded and coded targets are classified. Moreover, the gray scale centroid algorithm is applied to obtain the subpixel location of both uncoded and coded targets. The initial matching of the uncoded target correspondences between an image pair is established according to similarity and compatibility, which are based on the ID correspondences of the coded targets. The outliers in the initial matching of the uncoded target are eliminated according to three rules to finally obtain the uncoded target correspondences. Practical examples show that the algorithm is rapid, robust and is of high precision and matching ratio.