期刊文献+
共找到16,227篇文章
< 1 2 250 >
每页显示 20 50 100
GPa-level pressure-induced enhanced corrosion resistance in TiZrTaNbSn biomedical high-entropy alloy
1
作者 Xiao-hong Wang Yu-lei Deng +6 位作者 Qiao-yu Li Zhi-xin Xu Teng-fei Ma Xing Yang Duo Dong Dong-dong Zhu Xiao-hong Yang 《China Foundry》 SCIE EI CAS CSCD 2024年第3期265-275,共11页
TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element ... TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase. 展开更多
关键词 biomedical HEAs precipitation grain boundary corrosion resistance TiZrTaNbSn
下载PDF
Effect of In doping on the evolution of microstructure,magnetic properties and corrosion resistance of NdFeB magnets
2
作者 李豫豪 范晓东 +8 位作者 贾智 范璐 丁广飞 刘新才 郭帅 郑波 曹帅 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期623-629,共7页
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga... The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets. 展开更多
关键词 In-doping NdFeB magnets magnetic properties corrosion resistance
下载PDF
Comparative analysis of microstructure,mechanical,and corrosion properties of biodegradable Mg-3Y alloy prepared by selective laser melting and spark plasma sintering
3
作者 P.Minárik M.Zemková +6 位作者 S.Šašek J.Dittrich M.Knapek F.Lukáˇc D.Koutný J.Jaroš R.Král 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1496-1510,共15页
This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was conso... This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications. 展开更多
关键词 Magnesium YTTRIUM Powder metallurgy MICROSTRUCTURE Mechanical strength corrosion resistance
下载PDF
Enhanced corrosion resistance of epoxy resin coating via addition of CeO_(2) and benzotriazole
4
作者 Xu Han Ruijie Guo +1 位作者 Baolong Niu Hong Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期89-96,共8页
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res... The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail. 展开更多
关键词 BENZOTRIAZOLE Cerium dioxide corrosion resistance Carbon steel Epoxy resin coating Preparation
下载PDF
Effect of nano-CaO particle on the microstructure,mechanical properties and corrosion behavior of lean Mg-1Zn alloy
5
作者 Guangxin Shen Shaoyuan Lyu +5 位作者 Leiting Yu Tianlu Li Chen You Xuewei Wang Minfang Chen Bin Jiang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期794-814,共21页
The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the g... The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the grain size and improved mechanical properties of the Mg-1Zn alloy.At the same time,CaO reacted with molten Mg in situ to form nano-MgO,whose corrosion product in SBF solution was the same with the degradation product of Mg matrix,resulting in the enhanced compactness of the Mg(OH)_(2) layer and reduced corrosion rate of matrix.The Mg-1Zn alloy had lower corrosion resistance due to excessively large grain size and shedding of corrosion products.The composite with 0.5 wt.%CaO had the best corrosion resistance with a weight loss of 9.875 mg·y^(-1)·mm^(-2)due to the small number of Ca_(2)Mg_(6)Zn_(3) phase and suitable grain size.While for composites with high content of CaO(0.7 wt.%and 1.0 wt.%),they had lower corrosion resistance due to the coexistence of large number of Ca_(2)Mg_(6)Zn_(3) and Mg_(2)Ca at grain boundaries,especially for 1.0 wt.%CaO composite,resulting from the strong micro-galvanic corrosion. 展开更多
关键词 Lean Mg alloy In situ MgO Nanoparticles Grain refinement corrosion resistance
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer
6
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating corrosion/wear resistance Blocking layer
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
7
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes corrosion resistance AM50 magnesium alloy
下载PDF
Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications
8
作者 Jinge Liu Bangzhao Yin +7 位作者 Fei Song Bingchuan Liu Bo Peng Peng Wen Yun Tian Yufeng Zheng Xiaolin Ma Caimei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期940-953,共14页
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples... Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications. 展开更多
关键词 Laser powder bed fusion Biodegradable magnesium alloy High temperature oxidation corrosion resistance WE43.
下载PDF
ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy 被引量:5
9
作者 Shiquan Jiang Zhiyuan Zhang +3 位作者 Dong Wang Yuqing Wen Ning Peng Wei Shang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1367-1380,共14页
Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-ar... Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates. 展开更多
关键词 Mg alloy Composite coating Metal-organic framework corrosion resistance SUPERHYDROPHOBICITY
下载PDF
Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys 被引量:4
10
作者 Dong Wang Chen Ma +4 位作者 Jinyu Liu Weidong Li Wei Shang Ning Peng Yuqing Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1128-1139,共12页
Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their p... Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications.Therefore,a micro-arc oxidation/graphene oxide/stearic acid(MAO/GO/SA)superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation(MAO)technology,electrodeposition technique,and self-assembly technology.The composition and microstructure of the coating were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopy,and Raman spectroscopy.The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization,electrochemical impedance spectroscopy tests,and salt spray tests.The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity,and it attained a contact angle of 159.53°±2°.The MAO/GO/SA composite coating exhibited high resistance to corrosion,according to electrochemical and salt spray tests. 展开更多
关键词 magnesium alloy composite coating SUPERHYDROPHOBIC corrosion resistance anti-soiling performance
下载PDF
ZnO@ZIF-8 core-shell structure nanorods superhydrophobic coating on magnesium alloy with corrosion resistance and self-cleaning 被引量:2
11
作者 Shiquan Jiang Weidong Li +5 位作者 Jinyu Liu Jiqiong Jiang Zhe Zhang Wei Shang Ning Peng Yuqing Wen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3287-3301,共15页
A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidat... A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidation(MAO) coating as transition layer can effectively enhance the bonding force of the superhydrophobic coating. The semiconductor@metal organic frameworks(MOFs) core-shell structure was synthesized by a simple self-templating method, and obtained ZnO@2-methylimidazole zinc salt(ZIF-8) nanorods array on magnesium(Mg)alloy. ZnO nanorods not only act as the template but also provide Zn^(2+) for ZIF-8. In addition, we proved that the ligand concentration,synthesis time and temperature are the keys to the preparation of ZnO@ZIF-8 nanorods. As we expect, the ZnO@ZIF-8 nanorods array can trap air in the gaps to form an air layer, and the coating exhibits superhydrophobic properties(154.81°). Excitingly, ZnO@ZIF-8 nanorods array shown a superhydrophobic property, without the requirement of fluorination or silane treatment. The results shown that the coating has good chemical stability and self-cleaning performance. Meanwhile, the corrosion resistance has been significantly improved, R_(ct) was increased from 1.044×10^(3) to 1.414×10^(6) Ω/cm^(2) and I_(corr) was reduced from 4.275×10^(-5) to 5.611×10^(-9)A/cm^2. Therefore, the semiconductor@MOFs core-shell structure has broad application prospects in anti-corrosion. 展开更多
关键词 Mg alloy ZnO@ZIF-8 Coatings corrosion resistance SUPERHYDROPHOBIC
下载PDF
Self-repairing functionality and corrosion resistance of in-situ Mg-Al LDH film on Al-alloyed AZ31 surface 被引量:1
12
作者 Yi-Xing Zhu Guang-Ling Song Peng-Peng Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1567-1579,共13页
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s... A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys. 展开更多
关键词 LDH film Surface alloying corrosion resistance SELF-REPAIRING
下载PDF
Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing 被引量:1
13
作者 Guowei Wang Dan Song +5 位作者 Yanxin Qiao Jiangbo Cheng Huan Liu Jinghua Jiang Aibin Ma Xiaolong Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1422-1439,共18页
Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium allo... Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating. 展开更多
关键词 Magnesium-lithium alloy Super-hydrophobic coating One-step hydrothermal process corrosion resistance Multiscale microstructure
下载PDF
Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy:Effects of citric acid pretreatment and intermetallic compounds 被引量:1
14
作者 Jin-Meng Wang Xiang Sun +6 位作者 Liang Song M.Bobby Kannan Fen Zhang Lan-Yue Cui Yu-Hong Zou Shuo-Qi Li Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2967-2979,共13页
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ... In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy. 展开更多
关键词 Magnesium alloy Citric acid pretreatment Steam coating Layered double hydroxide Intermetallic compounds corrosion resistance
下载PDF
Effect of modified MgAl-LDH coating on corrosion resistance and friction properties of aluminum alloy
15
作者 Zuokai Wang Zhuangzhuang Xiong +6 位作者 Xinxin Li Di Wang Yuelin Wang Shangcheng Wu Lixia Ying Zhideng Wang Guixiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期81-95,共15页
The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance... The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance and friction qualities of aluminum alloy,the MgAl-LDH coating was treated using stearic acid(SA)and thiourea(TU).The aluminum substrate and anodized aluminum film layer corroded to varying degrees after 24 h of immersion in 3.5%(mass)NaCl solution,while the modified hydrotalcite film layer continued to exhibit the same microscopic morphology even after being immersed for 7 d.The results show that the synergistic action of thiourea and stearic acid can effectively improve the corrosion resistance of the MgAl-LDH substrate.The tribological testing reveals that the hydrotalcite film layer and the modified film layer lowered the friction coefficient of the anodized aluminum surface substantially.The results of the simulations and experiments demonstrate that SA forms the dense LDH-TU interlayer film layer by exchanging NO_(3)^(-)ions between TU layers on the one hand and the LDH-SA film layer by adsorption on the surface of LDH on the other.Together,these two processes create LDH-TUSA,which can significantly increase the substrate’s corrosion resistance.This synergistically modified superhydrophobic and retardant hydrotalcite film layer offers a novel approach to the investigation of wear reduction and corrosion protection on the surface of aluminum and its alloys. 展开更多
关键词 ANODIZING Layered double hydroxide SUPERHYDROPHOBIC corrosion resistance Tribological properties
下载PDF
Incorporation of Mg-phenolic networks as a protective coating for magnesium alloy to enhance corrosion resistance and osteogenesis in vivo
16
作者 Chang Wang Bo Zhang +6 位作者 Sen Yu Hao Zhang Wenhao Zhou Rifang Luo Yunbing Wang Weiguo Bian Genwen Mao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4247-4262,共16页
Magnesium(Mg) and its alloys have been intensively studied to develop the next generation of bone implants recently, but their clinical application is restricted by rapid degradation and unsatisfied osteogenic effect ... Magnesium(Mg) and its alloys have been intensively studied to develop the next generation of bone implants recently, but their clinical application is restricted by rapid degradation and unsatisfied osteogenic effect in vivo. A bioactive chemical conversion Mg-phenolic networks complex coating(e EGCG) was stepwise incorporated by epigallocatechin-3-gallate(EGCG) and exogenous Mg^(2+)on Mg-2Zn magnesium alloy. Simplex EGCG induced chemical conversion coating(c EGCG) was set as compare group. The in vitro corrosion behavior of Mg-2Zn alloy, c EGCG and e EGCG was evaluated in SBF using electrochemical(PDP, EIS) and immersion test. The cytocompatibility was investigated with rat bone marrow mesenchymal stem cells(r BMSCs). Furthermore, the in vivo tests using a rabbit model involved micro computed tomography(Micro-CT) analysis, histological observation, and interface analysis. The results showed that the e EGCG is Mgphenolic multilayer coating incorporated Mg-phenolic networks, which is rougher, more compact and much thicker than c EGCG. The e EGCG highly improved the corrosion resistance of Mg-2Zn alloy, combined with its lower average hemolytic ratios, continuous high scavenging effect ability and relatively moderate contact angle features, resulting in a stable and suitable biological environment, obviously promoted r BMSCs adhesion and proliferation. More importantly, Micro-CT, histological and interface elements distribution evaluations all revealed that the e EGCG effectively inhibited degradation and enhanced bone tissue formation of Mg alloy implants. This study puts forward a promising bioactive chemical conversion coating with Mg-phenolic networks for the application of biodegradable orthopedic implants. 展开更多
关键词 Mg-phenolic networks Bioactive coating Mg-2Zn alloy corrosion resistance OSTEOGENESIS
下载PDF
Two-Dimensional Co_(2)(OH)1,4-Benzenedicarboxylate-Halloysite Nanotube Nanocomposite-Epoxy Coating with High Corrosion Resistance
17
作者 Zhao Huarong Zhang Yueshuang Cheng Zhilin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期44-53,共10页
Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.I... Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.In this work,based on the high interface compatibility of two-dimensional(2D)Co_(2)(OH)_(2)BDC(BDC=1,4-benzenedicarboxylate)in the epoxy coating that we reported in previous work,we fabricated a 2D Co_(2)(OH)_(2)BDC-halloysite nanotube(HNT)nanocomposite have a structure consisting of alternating of nanosheets and nanotube by in situ synthesis.The nanocomposite was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,and scanning electron microscopy.The mechanical and anticorrosion performance of the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was evaluated by mechanical tests and electrochemical impedance spectroscopy spectra.Compared with a conventional unreinforced epoxy coating,the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating had higher mechanical strength and toughness,and the low-frequency impedance modulus of 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was increased by three orders of magnitude,demonstrating the high corrosion resistance of our reinforced coating. 展开更多
关键词 Composite materials 2D Co_(2)(OH)1 4-Benzenedicarboxylate-Halloysite Nanotube halloysite nanotube epoxy coatings corrosion resistance
下载PDF
Mechanical strength and corrosion resistance of Al-additive friction stir welded AZ31B joints
18
作者 Jae-Yeon Kim Eun-Woo Kim +4 位作者 Dong-O Kim Eun-Kyo Ju Ji-Eun Lee Jaeheon Lee Jai-Won Byeon 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1519-1535,共17页
Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using... Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using the existing joining methods.Herein,we propose for the first time an additive friction stir-welding(AFSW)using fine Al powder as an additive to improve the mechanical strength as well as corrosion resistance of AZ31B weld joints.AFSW is a solid-state welding method of forming a high-Al AZ31B joint via an in-situ reaction between pure Al powders filled in a machined groove and the AZ31B matrix.To optimize the process parameters,AFSW was performed under different rotational and transverse speeds,and number of passes,using tools with a square or screw pin.In particular,to fabricate a weld zone,where the Al was homogenously dispersed,the effects of the groove shape were investigated using three types of grooves:surface one-line groove,surface-symmetric grooves,and inserted symmetric grooves.The homogenous and defect-less AFS-welded AZ31B joint was successfully fabricated with the following optimal parameters:1400 rpm,25 mm/min,four passes,inserted symmetric grooves,and the tool with a square pin.The AFSW fully dissolved the additive Al intoα-Mg and in-situ precipitated Mg_(17)Al_(12)particles,which was confirmed via scanning electron microscopy,transmission electron microscope,and X-ray diffraction analyses.The microhardness,joint efficiency,and elongation at the fracture point of the AFS-welded AZ31B joint were 80 HV,101%,and 8.9%,respectively.These values are higher than those obtained for the FS-welded AZ31 joint in previous studies.The corrosion resistance of the AFS-welded AZ31B joint,evaluated via hydrogen evolution measurements and potentiodynamic polarization tests,was enhanced to 55%relative to the FS-welded AZ31B joint. 展开更多
关键词 AZ31B magnesium alloy Additive friction stir-welding In-situ reaction Mg_(17)Al_(12)particles Joint efficiency corrosion resistance
下载PDF
Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels 被引量:1
19
作者 郭锋 林勤 孙学义 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期533-536,共4页
Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current i_(corr), and characteristic potential of pittin... Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current i_(corr), and characteristic potential of pitting E_b. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization. 展开更多
关键词 metal material corrosion resistance carbon-manganese clean steel ELECTROCHEMISTRY rare earths
下载PDF
Study on Seawater Corrosion Resisting Properties ofAl-Mg-RE Alloy Gauze
20
作者 公茂秀 严丽君 +1 位作者 王玉集 杜浩 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第4期285-288,共4页
The corrosion resistance of gauzes made of various materials, including Al-Mg-RE alloy with various RE contents, Al-Mg alloy, low-carbon steel and plastic, was evaluated and compared. The experimental methods used inc... The corrosion resistance of gauzes made of various materials, including Al-Mg-RE alloy with various RE contents, Al-Mg alloy, low-carbon steel and plastic, was evaluated and compared. The experimental methods used include immersion method, salt spray test, weight loss test, electrode potential analysis and metallographic method, etc. The corrosion resistance of Al-Mg-RE alloy gauzes in mediums such as running water, natural seawater, NaCl solution with various concentrations, 0.05 mol.L-1 Na2SO4 solution, and 10% H2SO4 solution etc., is superior to those of Al-Mg alloy gauzes made in either China or U.S.A., and much superior to those of gauzes made of low-carbon steel and plastic. The electrode potentials of the Al-Mg-RE alloy in both the natural seawater and 0.05 mol.L-1 Na2SO4 solution increase linearly with increasing RE content in the alloy. The microstructure in the Al-Mg-RE alloy has been refined and the shape of compounds has been obviously changed comparing with those in Al-Mg alloy without RE elements. AU these microstructural changes are favorable to the corrosion resistance of the alloy. The Al-Mg-RE alloy gauze may be used as a substitute for those made df Al-Mg alloy, low-carbon steel and plastic in moisture marine or industrial environment for better serviceability. 展开更多
关键词 rare earths Al-Mg-RE alloy corrosion resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部