The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectros...The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.展开更多
A new kind of corrosion resistant steelfor cargo oiltanks(COT)was developed.The influences of finalrolling temperature,cooling rate,and finalcooling temperature on microstructure were investigated.The proper rolling...A new kind of corrosion resistant steelfor cargo oiltanks(COT)was developed.The influences of finalrolling temperature,cooling rate,and finalcooling temperature on microstructure were investigated.The proper rolling process parameters were obtained through multi-pass thermalsimulation test.The finalrolling temperature is about 820 ℃,the finalcooling temperature is about 600 ℃,and the cooling rate should be controlled between 10 ℃/s and 20 ℃/s.Based on the above analysis of the results,three groups of rolling samples by thermo mechanicalcontrolprocess are prepared.The tensile strength,yield strength,and toughness of the corrosion resistant steelare measured,which meet the requirements of DH36 steel,it can instruct the actualrolling production.The corrosion behaviour is also researched by weight loss and electrochemicalimpedance spectroscopic method,and it is found that the steelhas good corrosion resistance performance,the best one is No.3 steel,the corrosion rate of which is about 1/4 of the accepted criterion.展开更多
The corrosive experiments of YBCO were conducted in the steam at different temperatures. The relationship between the critical current and the corrosive time at the same temperature was measured. The corrosion rate wa...The corrosive experiments of YBCO were conducted in the steam at different temperatures. The relationship between the critical current and the corrosive time at the same temperature was measured. The corrosion rate was also calculated. The textured YBCO superconductor was coated by sintering Ag plating method. Another coating method with polytetrafluoroethylene (PTFE) and low temperature resin was studied for the sintered YBCO superconductors as the protect layer. The above two kinds of coating methods can be used to meet the desire of the protection for YBCO superconductor and its thin film device.展开更多
316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce o...316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.展开更多
Carbonyl iron(CI)particles as magnetic microwave absorption material often suffer from serious corrosion under corrosive environment which leads to performance deterioration.In this study,fluorin-containing acrylate t...Carbonyl iron(CI)particles as magnetic microwave absorption material often suffer from serious corrosion under corrosive environment which leads to performance deterioration.In this study,fluorin-containing acrylate type polymer network layers with thickness ranging from tens of nanometers to around one hundred nanometers were formed continuously around CI.The crosslinked coating layer(named FT)effectively increases CI’s thermal decomposition temperature by at least 34%.The FT-coated CI(named CI-FT)was able to resist both inorganic and organic corrosive media attacking efficiently compared with bare CI.The surface polymer network could also help CI withstand organic medium dissolution which proved the firmness of coating.Cyclic voltammetry(CV)test revealed that the coating layer could significantly reduce maximum oxidation current density of CI by more than 45 times.Tafel polarization study during CV tests also confirmed that thicker FT coating layer could help CI sample stabilize corrosion current density.Meanwhile,the surface coating also enhanced the impedance matching properties of CI as microwave absorber and the CI-FT samples demonstrated improved microwave absorption properties which degenerated little after corrosive medium soaking compared with that of CI.展开更多
Friction stir processing (FSP) was investigated as a method of repairing cracks in 12 mm thick 304L stainless steel plate. Healing feasibility was demonstrated by processing a tapered crack using a PCBN/W- Re tool w...Friction stir processing (FSP) was investigated as a method of repairing cracks in 12 mm thick 304L stainless steel plate. Healing feasibility was demonstrated by processing a tapered crack using a PCBN/W- Re tool with a 25 mm diameter shoulder and a pin length of 6.4 mm. The experiment showed that it was possible to heal a crack that begins narrow and then progressively grows up to a width of 2 mm. Bead on plate experiments were used to find the best parameters for creating a consolidated stir zone with the least amount of hardness difference compared to the base metal. Grain refinement in some specimens resulted in much higher stir zone hardness, compared to base metal, A plot of grain size versus microhardness showed a very strong inverse correlation between grain size and hardness, as expected from the Hall- Perch relationship. Corrosion testing was carried out in order to evaluate the effect of FSP on potential sensitization of the stir zone. After 1000 h of intermittent immersion in 3.5% saline solution at room temperature it was found that no corrosion products formed on the base material controls or on any of the friction stir processed specimens.展开更多
In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in tbe processed...In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in tbe processed zone (PZ)with a thickness of about 2.5mm. The yield strength (325 MPa) and ultimate tensile strength (451 MPa) of FSP IF steel were significantly higher than those of base material (BM) (192 and 314 MPa), while the elongation (67.5%) almost remained unchanged compared with the BM (66.2%). The average microhardness value of the PZ was about 130 HV, 1.3 times bigher than that of the BM. In addition, the FSP IF steel showed a more positive corrosion potential and lower corrosion current density than the BM, exhibiting lower corrosion tendency and corrosion rates in a 3.5 wt% NaCl solution. Furtbernlore, FSP IF steel exhibited higher fatigue life than the BM both in air and NaCl solution. Corrosion fatigue fracture surfaces of FSP IF steel mainly exhihited a typical transgranular fracture with fatigue striations, while the BM predominantly presented an intergranular fracture. Enhanced corrosion fatigue performance was mainly attributed to the increased resistance of nucleation and growth of fatigue cracks. The corrosion fatigue mechanism was primarily controlled by anodic dissolution under the combined effect of cyclic stress and corrosive solution.展开更多
In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanogra...In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanograin layer were compared with that of coarse-structure counterpart.More than threefold increase in the hardness was observed due to the formation of nanograin layer.The size of nanograms in the stir zone was within 30-150 nm.This resulted in 50%increase in the fatigue strength of nanostructured specimen.Furthermore,the fracture surfaces were characterized using field emission scanning electron microscopy and scanning electron microscopy.As for the fatigue behavior of nanograin IF steel,the fracture surface was characterized by the formation of nanospacing striations and nanodimples.Besides,the nanograin structure pronounced the passivity and exhibited higher corrosion resistance.展开更多
The corrosion behaviors of the high-performance weathering test steel for bridge and the reference (09CuPCrNi-A) were symmetrically studied under 3.5% NaCl neutral wet/dry alternate condition,revealing their dynamics ...The corrosion behaviors of the high-performance weathering test steel for bridge and the reference (09CuPCrNi-A) were symmetrically studied under 3.5% NaCl neutral wet/dry alternate condition,revealing their dynamics line tendency of primary corrosion and the rusting flow in the simulative marine atmosphere environment.By observing the corrosion evolution of surface microstructures and composition by the scanning electronic microscope (SEM) and the energy dispersive spectrometer (EDS) at the different stages,the corrosion mechanism was further discussed in details.展开更多
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m...China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.展开更多
基金Supported by National Key Basic Research Program of China ("973" Program, No. 2011CB610505)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120032110029)Key Project of Tianjin Natural Science Foundation (No. 13JCZDJC29500)
文摘The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.
基金Funded by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China during the“12th Five-Year Plan”(No.2011BAE25B03)
文摘A new kind of corrosion resistant steelfor cargo oiltanks(COT)was developed.The influences of finalrolling temperature,cooling rate,and finalcooling temperature on microstructure were investigated.The proper rolling process parameters were obtained through multi-pass thermalsimulation test.The finalrolling temperature is about 820 ℃,the finalcooling temperature is about 600 ℃,and the cooling rate should be controlled between 10 ℃/s and 20 ℃/s.Based on the above analysis of the results,three groups of rolling samples by thermo mechanicalcontrolprocess are prepared.The tensile strength,yield strength,and toughness of the corrosion resistant steelare measured,which meet the requirements of DH36 steel,it can instruct the actualrolling production.The corrosion behaviour is also researched by weight loss and electrochemicalimpedance spectroscopic method,and it is found that the steelhas good corrosion resistance performance,the best one is No.3 steel,the corrosion rate of which is about 1/4 of the accepted criterion.
文摘The corrosive experiments of YBCO were conducted in the steam at different temperatures. The relationship between the critical current and the corrosive time at the same temperature was measured. The corrosion rate was also calculated. The textured YBCO superconductor was coated by sintering Ag plating method. Another coating method with polytetrafluoroethylene (PTFE) and low temperature resin was studied for the sintered YBCO superconductors as the protect layer. The above two kinds of coating methods can be used to meet the desire of the protection for YBCO superconductor and its thin film device.
基金financially supported by NSFC-Guangdong Natural Science Mutual Funds(Item No.U1034002)
文摘316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.
基金financially supported by the National Natural Science Foundation of China(Nos.U19A2096,51903030,52021001)。
文摘Carbonyl iron(CI)particles as magnetic microwave absorption material often suffer from serious corrosion under corrosive environment which leads to performance deterioration.In this study,fluorin-containing acrylate type polymer network layers with thickness ranging from tens of nanometers to around one hundred nanometers were formed continuously around CI.The crosslinked coating layer(named FT)effectively increases CI’s thermal decomposition temperature by at least 34%.The FT-coated CI(named CI-FT)was able to resist both inorganic and organic corrosive media attacking efficiently compared with bare CI.The surface polymer network could also help CI withstand organic medium dissolution which proved the firmness of coating.Cyclic voltammetry(CV)test revealed that the coating layer could significantly reduce maximum oxidation current density of CI by more than 45 times.Tafel polarization study during CV tests also confirmed that thicker FT coating layer could help CI sample stabilize corrosion current density.Meanwhile,the surface coating also enhanced the impedance matching properties of CI as microwave absorber and the CI-FT samples demonstrated improved microwave absorption properties which degenerated little after corrosive medium soaking compared with that of CI.
基金financial support of the project by National Science Foundation award CMII-1405508
文摘Friction stir processing (FSP) was investigated as a method of repairing cracks in 12 mm thick 304L stainless steel plate. Healing feasibility was demonstrated by processing a tapered crack using a PCBN/W- Re tool with a 25 mm diameter shoulder and a pin length of 6.4 mm. The experiment showed that it was possible to heal a crack that begins narrow and then progressively grows up to a width of 2 mm. Bead on plate experiments were used to find the best parameters for creating a consolidated stir zone with the least amount of hardness difference compared to the base metal. Grain refinement in some specimens resulted in much higher stir zone hardness, compared to base metal, A plot of grain size versus microhardness showed a very strong inverse correlation between grain size and hardness, as expected from the Hall- Perch relationship. Corrosion testing was carried out in order to evaluate the effect of FSP on potential sensitization of the stir zone. After 1000 h of intermittent immersion in 3.5% saline solution at room temperature it was found that no corrosion products formed on the base material controls or on any of the friction stir processed specimens.
基金sponsorship from the National Natural Science Foundation of China under grant Nos.51404180,51274161 and U1360105
文摘In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in tbe processed zone (PZ)with a thickness of about 2.5mm. The yield strength (325 MPa) and ultimate tensile strength (451 MPa) of FSP IF steel were significantly higher than those of base material (BM) (192 and 314 MPa), while the elongation (67.5%) almost remained unchanged compared with the BM (66.2%). The average microhardness value of the PZ was about 130 HV, 1.3 times bigher than that of the BM. In addition, the FSP IF steel showed a more positive corrosion potential and lower corrosion current density than the BM, exhibiting lower corrosion tendency and corrosion rates in a 3.5 wt% NaCl solution. Furtbernlore, FSP IF steel exhibited higher fatigue life than the BM both in air and NaCl solution. Corrosion fatigue fracture surfaces of FSP IF steel mainly exhihited a typical transgranular fracture with fatigue striations, while the BM predominantly presented an intergranular fracture. Enhanced corrosion fatigue performance was mainly attributed to the increased resistance of nucleation and growth of fatigue cracks. The corrosion fatigue mechanism was primarily controlled by anodic dissolution under the combined effect of cyclic stress and corrosive solution.
文摘In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanograin layer were compared with that of coarse-structure counterpart.More than threefold increase in the hardness was observed due to the formation of nanograin layer.The size of nanograms in the stir zone was within 30-150 nm.This resulted in 50%increase in the fatigue strength of nanostructured specimen.Furthermore,the fracture surfaces were characterized using field emission scanning electron microscopy and scanning electron microscopy.As for the fatigue behavior of nanograin IF steel,the fracture surface was characterized by the formation of nanospacing striations and nanodimples.Besides,the nanograin structure pronounced the passivity and exhibited higher corrosion resistance.
文摘The corrosion behaviors of the high-performance weathering test steel for bridge and the reference (09CuPCrNi-A) were symmetrically studied under 3.5% NaCl neutral wet/dry alternate condition,revealing their dynamics line tendency of primary corrosion and the rusting flow in the simulative marine atmosphere environment.By observing the corrosion evolution of surface microstructures and composition by the scanning electronic microscope (SEM) and the energy dispersive spectrometer (EDS) at the different stages,the corrosion mechanism was further discussed in details.
基金support from Chinese Committee for Magnesium and its Application
文摘China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.