期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Advancements in enhancing corrosion protection of Mg alloys:A comprehensive review on the synergistic effects of combining inhibitors with PEO coating
1
作者 Arash Fattah-alhosseini Abdelhameed Fardosi +1 位作者 Minoo Karbasi Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期465-489,共25页
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica... Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments. 展开更多
关键词 INHIBITOR Mg alloy Self-healing coating Plasma electrolytic oxidation(PEO) corrosion protection
下载PDF
Functionalized carbon dots for corrosion protection:Recent advances and future perspectives
2
作者 Li Zhao Jinke Wang +5 位作者 Kai Chen Jingzhi Yang Xin Guo Hongchang Qian Lingwei Ma Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2112-2133,共22页
Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterial... Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented. 展开更多
关键词 carbon dots corrosion protection corrosion inhibitors SELF-HEALING SELF-REPORTING
下载PDF
Recent progress in self-repairing coatings for corrosion protection on magnesium alloys and perspective of porous solids as novel carrier and barrier
3
作者 Yajie Yang Yufei Wang +5 位作者 Mei-Xuan Li Tianshuai Wang Dawei Wang Cheng Wang Min Zha Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3585-3608,共24页
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti... Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions. 展开更多
关键词 Mg alloys COATINGS SELF-REPAIRING corrosion protection Porous solids
下载PDF
High-performance triboelectric nanogenerator based on ZrB_(2)/polydimethylsiloxane for metal corrosion protection
4
作者 Xiucai Wang Naijian Hu +6 位作者 Jia Yang Jianwen Chen Xinmei Yu Wenbo Zhu Chaochao Zhao Ting Wang Min Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1957-1964,共8页
Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads... Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads to great prospects in metal corrosion prevention and cathodic protection.In this work,flexible TENGs were designed to use the energy harvested by flexible polydimethylsiloxane(PDMS)films with ZrB_(2)nanoparticles and effectively improve the dielectric constant by incorporating ZrB_(2).The open-circuit voltage and short-circuit current were 264 V and 22.9μA,respectively,and the power density of the TENGs reached 6 W·m^(-2).Furthermore,a selfpowered anti-corrosion system was designed by the rectifier circuit integrated with TENGs,and the open-circuit potential(OCP)and Tafel curves showed that the system had an excellent anti-corrosion effect on carbon steel.Thus,the system has broad application prospects in fields such as metal cultural relics,ocean engineering,and industry. 展开更多
关键词 ZrB_(2) triboelectric nanogenerator SELF-POWERED corrosion protection
下载PDF
Corrosion protection properties of vanadium films formed on zinc surfaces 被引量:4
5
作者 ZOU Zhongli LINing LI Deyu 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期146-149,共4页
Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in... Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in contact with a 3.5 wt.% NaC1 solution were studied using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. According to these results, the V-treated layer significantly improved the corrosion resistance of zinc surfaces. In comparison with the Cr-treated layer, the V-treated layer exhibited a better corrosion resistance. The composition of the V-treated layer was studied using X-ray photoelectron spectroscopy (XPS). XPS measurements indicated that the vanadium layer formed on zinc surfaces and the vanadium-rich coating was a hydrated oxide with a composition of V2O5, VO2, and its hydrates such as V2O5.nH2O and VO(OH)2. 展开更多
关键词 corrosion protection surface treatment ZINC VANADIUM thin films corrosion resistance
下载PDF
A route for large-scale preparation of multifunctional superhydrophobic coating with electrochemically-modified kaolin for efficient corrosion protection of magnesium alloys 被引量:2
6
作者 Xiang Liu Tian C.Zhang +2 位作者 Yuxin Zhang Jinsong Rao Shaojun Yuan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3082-3099,共18页
Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparati... Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparation process and infirm rough structures. In this study, the electrochemical method was adopted by using a two-electrode system for rapid hydrophobic modification to obtain superhydrophobic kaolin.By mixing the modified superhydrophobic kaolin with commercial epoxy resin and polydimethylsiloxane glue, a paint can be formed and easily used on various substrates for preparation of superhydrophobic coating via spraying method. The influence factors on wettability of the modified kaolin and the mixing ratio of each component of the coating were explored. Also, the wettability, durability and anticorrosion of the prepared coating were evaluated comprehensively. The coating was able to maintain superhydrophobic after immersed in HCl solution at pH 1, the NaOH solution at pH 14, and 3.5 wt.% NaCl solution for 16, 21, 30 days, respectively. In addition, the coating exhibited 4A grade adhesion, high hydrophobicity after abraded for 200 cycles on a 600-mesh sandpaper with 100 g weight, and 99.86% anticorrosion efficiency after soaked in 3.5 wt.% NaCl solution for 20 days, demonstrating a good robustness and anti-corrosion property. Furthermore, the coating showed good transparency, flexibility and was easy to make in a large scale by the spraying method, which is of great significance to promote the practical application of superhydrophobic coatings and the anticorrosion Mg alloys. 展开更多
关键词 Superhydrophobic coating Large-scale application Magnesium alloys corrosion protection
下载PDF
Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel 被引量:1
7
作者 Fateme Abdi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期508-514,共7页
To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by incre... To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM). 展开更多
关键词 corrosion protection MULTILAYER zigzag thin film EIS equivalent circuit
下载PDF
Active corrosion protection of phosphate loaded PEO/LDHs composite coatings:SIET study 被引量:1
8
作者 Gen Zhang E Jiang +3 位作者 Liang Wu Aitao Tang Andrej Atrens Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1351-1357,共7页
This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction i... This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction in 0.1 M phosphate solution. The coated specimens were scratched. Characterization, including utilization of the localized technique SIET, measured the pH and p Mg distributions and optical morphologies around the artificial defects during immersion in 0.05 M NaCl solution. In contrast with phosphate loaded PEO/LDHs, a stronger alkalinization area(with pH 11.4~12.3) appeared in the passive PEO specimens. Due to formation of insoluble Mg(OH)_(2) products, the p Mg map showed depletion of Mg^(2+) in this high p H area. Combined with optical morphologies and SEM images, the better self-healing ability toward defects for phosphate loaded PEO/LDHs was confirmed. 展开更多
关键词 Layered double hydroxides Active corrosion protection SIET PHOSPHATE
下载PDF
Corrosion Protection of 5083 AA in SalineWater by Polyacrylonitrile Nanofibers
9
作者 Enas H.Ali Juman A.Naser +1 位作者 Zainab W.Ahmed Taki A.Himdan 《Journal of Renewable Materials》 SCIE EI 2021年第11期1927-1939,共13页
Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion.Through the literature search,the use of polyacrylonitrile nanofibres(PANNFs)as a corrosion inhibitor coating for aluminum a... Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion.Through the literature search,the use of polyacrylonitrile nanofibres(PANNFs)as a corrosion inhibitor coating for aluminum alloys has not been evaluated.This work includes the development of a new,lightweight,high surface area and efficient coating of PANNFs that produced using electrospinning process to resist the corrosion of aluminum alloys(AA5083)which immersed in 0.6 M NaCl at alkaline medium(pH=12)and acidic medium(pH=1)at a range of temperatures(293–323)K.The PANNFs coating was successfully deposited on AA 5083 specimens,where these samples were considered as a collector electrode in the electrospinning process.The corrosion experiments of the aluminum alloys coated with PANNFs before and after immersion in both corrosive mediums were investigated using cyclic potential polarization(CPP).The results confirmed that the PANNFs coating was able to protect the surface of the aluminum specimens from corrosion,by reducing the corrosion current and increasing the surface polarization resistance,thus reducing the corrosion rate.The protection efficiency was found in the alkaline medium 98.8%while in the acidic medium 83.3%.So,it was in both mediums decreased with the increase in temperature.The shape,distribution and size of the polymeric nanofibers that formed the coating were also examined using field emission scanning electron microscopy(FE-SEM)and the percentages of the structural components of these fibers were detected using the X-ray dispersion spectroscopy(EDS).The surface of aluminum specimens was completely covered by PANNFs.These electrospun nanofibers have worn out and lined up spacing after immersion in the corrosive mediums.The diameters average of PANNFs was found to be about 200 and 150 nm before and after immersion,respectively. 展开更多
关键词 corrosion protection NANOFIBERS POLYACRYLONITRILE aluminum alloy saline medium protection efficiency
下载PDF
Recent progress in corrosion protection of friction stir welded high-strength aluminum alloy joints
10
作者 李文亚 李娜 +1 位作者 傅田 张志函 《China Welding》 EI CAS 2015年第4期1-8,共8页
Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively ... Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints. 展开更多
关键词 friction stir welding high-strength aluminum alloy corrosion protection
下载PDF
Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering
11
作者 Minjie Shi Nianting Chen +2 位作者 Yue Zhao Cheng Yang Chao Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期118-127,共10页
Organic materials are of great interest in various applications owing to their intrinsic designability,molecular controllability,ease of synthesis,and ecological sustainability.In this work,a facile and mild wet-chemi... Organic materials are of great interest in various applications owing to their intrinsic designability,molecular controllability,ease of synthesis,and ecological sustainability.In this work,a facile and mild wet-chemical strategy was carried out to construct a conjugated Ni-BTA coordination polymer via the π-d hybridization with 1,2,4,5-benzenetetramine(BTA)as π-conjugated ligands and Ni^(2+)as metallic centers,which exhibits a unique two-dimensional nanosheet-like structure with available active sites,sufficient electrochemical activity,and multi-electron redox capability.On the one hand,the as-prepared Ni-BTA coordination polymer as electrode material exhibits a rapid,reversible,and efficient energy storage behavior with a large reversible capacity of 198 mA·h·g^(-1)at 1 A·g^(-1) and a high-rate capability of 150 mA·h·g^(-1) at 20 A·g^(-1) in alkali-ion aqueous electrolyte,which are further demonstrated by the in-situ Raman investigation.On the other hand,the Ni-BTA coordination polymer as anti-corrosion additive was introduced into the epoxy resin to achieve a Ni-BTA epoxy coating,which shows a long-term anticorrosion performance with a low corrosion rate of 4.62×10_(-6) mm·a^(-1) and a high corrosion inhibition efficiency of 99.86%,suggesting its great engineering potential as the bi-functional organic material for high-performance energy storage and corrosion protection. 展开更多
关键词 Organic compounds NANOSTRUCTURE Dual functionality Energy storage corrosion protection
下载PDF
Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: Strategic positioning of nanocontainers
12
作者 Ai-meng Zhang Chengbao Liu +4 位作者 Pu-sheng Sui Cong Sun Lan-yue Cui M.Bobby Kannan Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4562-4574,共13页
Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategi... Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings. 展开更多
关键词 NANOCONTAINERS Self-healing coating Micro-arc oxidation corrosion protection Magnesium alloys
下载PDF
LDH conversion films for active protection of AZ31 Mg alloy
13
作者 B.Pillado B.Mingo +5 位作者 R.del Olmo E.Matykina A.M.Kooijman Y.Gonzalez−Garcia R.Arrabal M.Mohedano 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期201-216,共16页
Zinc aluminium(Zn-Al)and lithium aluminium(Li-Al)–layered double hydroxides(LDH)coatings with incorporated inhibitors(Li-,Mo-and W-based)were successfully synthesized on AZ31 Mg alloy.Zn-Al LDH W and Li-Al LDH Li sho... Zinc aluminium(Zn-Al)and lithium aluminium(Li-Al)–layered double hydroxides(LDH)coatings with incorporated inhibitors(Li-,Mo-and W-based)were successfully synthesized on AZ31 Mg alloy.Zn-Al LDH W and Li-Al LDH Li showed the highest corrosion resistance and were selected for further evaluation.SEM cross-section examination revealed a bi-layer structure composed of an outer part with loose flakes and a denser inner layer.XRD,FTIR,and XPS analysis confirmed the incorporation of the inhibitors.Post-treatments with corrosion inhibitors containing solutions resulted in the selective dissolution of the most external layer of the LDH coating,reducing the surface roughness,hydrophilicity and paint adhesion of the layers.Active corrosion properties were confirmed by SVET evaluation for the Zn-Al LDH W coating.The proposed active corrosion mechanism involves the ion-exchange of aggressive Cl-ions,deposition of hydroxides and competitive adsorption of W-rich corrosion inhibitors. 展开更多
关键词 AZ31 MAGNESIUM Layered double hydroxides corrosion inhibitors Active corrosion protection
下载PDF
CORROSION RESISTANCE OF HOT DIP GALVANIZED STEEL PRETREATED WITH BIS-FUNCTIONAL SILANES MODIFIED WITH NANOALUMINA 被引量:9
14
作者 F.J. Shan C.S. Liu +1 位作者 S.H. Wang G.C. Qi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第4期245-252,共8页
The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was ev... The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films. 展开更多
关键词 Bis-sulfur silane Nanoalumina corrosion protection Characterization Hot dip galvanised steel
下载PDF
Using EIS to evaluate anti-corrosion properties of the SiC_p/5A06 aluminium MMC treated by cerium conversion coatings 被引量:5
15
作者 张琦 项民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期109-116,共8页
This paper evaluated the protection effect of the cerium conversion coatings on the SiCp/5A06 Al composite and the 5A06 Al alloy.Electrochemical impedance spectroscopy(EIS) was employed to examine the variation of the... This paper evaluated the protection effect of the cerium conversion coatings on the SiCp/5A06 Al composite and the 5A06 Al alloy.Electrochemical impedance spectroscopy(EIS) was employed to examine the variation of the electrochemical variables of the samples treated and immersed in 3.5% NaCl solution at 35 °C for 1 h,which showed the enhancement of charge transfer resistance(Rt) and coating film resistance(Rc),i.e.,the corrosion resistance of the conversion coated samples was improved.The best protection ef... 展开更多
关键词 cerium conversion coating SiCp/5A06 Al composite EIS XPS corrosion protection rare earths
下载PDF
Improvement in corrosion resistance of magnesium coating with cerium treatment 被引量:5
16
作者 Samia Ben Hassen Latifa Bousselmi +2 位作者 Patrice Berot El Mustafa Rezrazi Ezzeddine Triki 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期277-283,共7页
Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (... Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was attributed to the formation of cerium oxides and hydroxides that gave rise to a physical barrier effect. 展开更多
关键词 magnesium coating CERIUM corrosion protection impedance spectroscopy
下载PDF
Anti-corrosion and electrically conductive inorganic conversion coatings based on aligned graphene derivatives by electrodeposition 被引量:2
17
作者 Wenxiang Fei Jincan Cui +3 位作者 Yahui Sun Junhe Yang Shanglin Gao Jing Li 《Nano Materials Science》 EI CAS CSCD 2022年第3期244-250,共7页
Ultrathin conversion coatings, made from aligned graphene derivatives and ammonium zirconium carbonate(AZC), were fabricated on stainless steel by electrodeposition. Sulfonated graphene oxide (SGO) provided electronpa... Ultrathin conversion coatings, made from aligned graphene derivatives and ammonium zirconium carbonate(AZC), were fabricated on stainless steel by electrodeposition. Sulfonated graphene oxide (SGO) provided electronpathways and physical barriers to corrosive molecules. Electrodeposition ensured the alignment of SGO and thefacile fabrication of the coatings. AZC is an environmental-friendly crosslinking agent, water-repellent andcorrosion inhibitor. Upon dehydration reactions, AZC improved the cohesion between SGO layers and anchoredthe conversion coatings on metal substrates. When the mass ratio of SGO to AZC was 2:1, the corrosion currentdensity of the composite coatings reached 0.098 μA cm^(-2), while that of the bared stainless steel was1.04 μA cm ^(-2), given a coating thickness of only 500 nm. The electrical conductivity of SGO/AZC compositecoatings can be tailored from 3.84 × 10^(-5) to 2.28×10^(-3)S‧cm^(-1) by heat treatment and HI reduction, whichsatisfied the electrical conductivity requirement of wide applications in electronic industry, office appliances andpetroleum storage. 展开更多
关键词 corrosion protection Electrical conductivity ELECTRODEPOSITION GRAPHENE
下载PDF
Influence of silane on corrosion resistance of magnesium alloy AZ31 with thermally sprayed aluminum coatings 被引量:7
18
作者 ZENG Rongchang CHEN Jun +2 位作者 KUANG Jun ZHANG Jin WANG Ying 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期193-197,共5页
关键词 magnesium alloy aluminum thermal spraying corrosion silane protection
下载PDF
A time-saving method to assess the efficiency of corrosion inhibitors by electro osmosis 被引量:1
19
作者 Chun-lei Geng Duan Weng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第3期370-376,共7页
The corrosion inhibitor is one of the most important technologies to enhance the durability of steel-reinforced concrete. A kind of time-saving method was developed to assess the inhibitor efficiency by using a 32 V e... The corrosion inhibitor is one of the most important technologies to enhance the durability of steel-reinforced concrete. A kind of time-saving method was developed to assess the inhibitor efficiency by using a 32 V electric field to accelerate chloride ion migration in concrete. Potentiodynamic polarization scanning test was used to evaluate the corrosion states. The comprehensive efficiency of an inhibitor should be assessed in two aspects: resistance to chloride ion permeability and inhibiting efficiency. The specimens with different mixing amount of sodium nitrite and migration corrosion inhibitors were used to verify the accuracy and reliability of this method. The results show the differences in inhibiting efficiency of the inhibitors clearly, indicating the reliability of this time-saving method. 展开更多
关键词 reinforced concrete corrosion corrosion inhibitors corrosion protection
下载PDF
QUANTUM-CHEMICAL MODIFICATIONS OF SURFACE:NEW METHODS FOR PROTECTING MATERIALS FROM CORROSION 被引量:1
20
作者 R. T. Malkhasyan (Scientific Production Enterprise "Atom" , Ministry of Industry and Trade, 3/1 Tevosyan, Yerevan, 375076, Armenia) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第6期415-418,共4页
A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of su... A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of surface by creating a film of amorphous iron on it. The presence of iron films with crystalline and amorphous phases, having the different Fermi levels, leads to formation of potential differences between them. This potential difference is opposite to the external electric field, resulting in decrease of anode current and increase of corrosion resistance. 展开更多
关键词 technical iron amorphous iron film corrosion and protection excited hydrogen molecule
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部