Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac...Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.展开更多
Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using...Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using the existing joining methods.Herein,we propose for the first time an additive friction stir-welding(AFSW)using fine Al powder as an additive to improve the mechanical strength as well as corrosion resistance of AZ31B weld joints.AFSW is a solid-state welding method of forming a high-Al AZ31B joint via an in-situ reaction between pure Al powders filled in a machined groove and the AZ31B matrix.To optimize the process parameters,AFSW was performed under different rotational and transverse speeds,and number of passes,using tools with a square or screw pin.In particular,to fabricate a weld zone,where the Al was homogenously dispersed,the effects of the groove shape were investigated using three types of grooves:surface one-line groove,surface-symmetric grooves,and inserted symmetric grooves.The homogenous and defect-less AFS-welded AZ31B joint was successfully fabricated with the following optimal parameters:1400 rpm,25 mm/min,four passes,inserted symmetric grooves,and the tool with a square pin.The AFSW fully dissolved the additive Al intoα-Mg and in-situ precipitated Mg_(17)Al_(12)particles,which was confirmed via scanning electron microscopy,transmission electron microscope,and X-ray diffraction analyses.The microhardness,joint efficiency,and elongation at the fracture point of the AFS-welded AZ31B joint were 80 HV,101%,and 8.9%,respectively.These values are higher than those obtained for the FS-welded AZ31 joint in previous studies.The corrosion resistance of the AFS-welded AZ31B joint,evaluated via hydrogen evolution measurements and potentiodynamic polarization tests,was enhanced to 55%relative to the FS-welded AZ31B joint.展开更多
Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures a...Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).展开更多
Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn additio...Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase;by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.展开更多
Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magn...Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.展开更多
This study aims to investigate the influence of Sn addition on microstructure and corrosion properties of AS21 magnesium alloys. The AS21 alloys with 0, 0.5, 1 and 2 wt.% Sn additions were produced by low pressure die...This study aims to investigate the influence of Sn addition on microstructure and corrosion properties of AS21 magnesium alloys. The AS21 alloys with 0, 0.5, 1 and 2 wt.% Sn additions were produced by low pressure die casting method. Microstructure characterizations were performed by optical and scanning electron microscopy. Corrosion properties of the alloys were examined by immersion and electrochemical corrosion tests in 3.5% NaCl solution. The microscopic results showed that AS21 alloy consisted of α-Mg, isolated β-Mg17Al12 and Chinese script type Mg2Si intermetallic phases. With increasing amount of Sn, the distribution of Mg2Si phase became more discrete and denser. After 2 wt.% Sn addition, a Sn-rich network structure formed throughout the microstructure and islands of Chinese script shape were made of shorter rods of Mg2Si phase. The constant immersion corrosion tests revealed that increasing Sn addition led to a continual decrease in the degradation of AS21 alloys, in which the corrosion rate of AS21 alloy was decreased by approximately 65% with 2 wt.% Sn addition. The electrochemical corrosion tests also showed that the corrosion resistance of AS21 alloy was gradually improved with increasing Sn content.展开更多
The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance.Addition of alloying elements is the simplest and effective method to improve the corrosion properties.Based...The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance.Addition of alloying elements is the simplest and effective method to improve the corrosion properties.Based on the low-cost alloy composition design,the corro-sion behavior of commercial Mg-3Al-1Zn(AZ31)alloy bearing minor Ca or Sn element was characterized by scanning Kelvin probe force microscopy,hydrogen evolution,electrochemical measurements,and corrosion morphology analysis.Results revealed that the potential differ-ence of Al_(2)Ca/α-Mg and Mg_(2)Sn/α-Mg was(230±19)mV and(80±6)mV,respectively,much lower than that of Al_(8)Mn_(5)/α-Mg(430±31)mV in AZ31 alloy,which illustrated that AZ31-0.2Sn alloy performed the best corrosion resistance,followed by AZ31-0.2Ca,while AZ31 al-loy exhibited the worst corrosion resistance.Moreover,Sn dissolved into matrix obviously increased the potential ofα-Mg and participated in the formation of dense SnO_(2) film at the interface of matrix,while Ca element was enriched in the corrosion product layer,resulting in the cor-rosion product layer of AZ31-0.2Ca/Sn alloys more compact,stable,and protective than AZ31 alloy.Therefore,AZ31 alloy bearing 0.2wt%Ca or Sn element exhibited excellent balanced properties,which is potential to be applied in commercial more comprehensively.展开更多
Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluid...Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluids by electrochemical and hydrogen evolution measurements.The corrosion rates of the BJP specimens were significantly higher than solid controls,even after accounting for their larger surface areas,suggesting that the BJP microstructure is detrimental to corrosion performance.X-ray computed tomography revealed nonuniform corrosion within the porous structure,with corrosion products forming on the pore walls.Impregnating the pores with hydroxyapatite or polymers greatly improved the corrosion resistance of the BJP samples.展开更多
To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) allo...To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) alloys in a 5wt% NaCl solution was investigated using immersion test and electrochemical measurements. The results of immersion test show that Mg-5Zn-0.3Zr-2Nd alloy exhibits the best corrosion resistance among the tested alloys. Electrochemical measurements show that secondary phases in RE-containing Mg-5Zn-0.3Zr alloys behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. The additions of Nd and Y into Mg-5Zn-0.3Zr alloy also improve the compactness of the corrosion product film and are beneficial to the corrosion resistance.展开更多
The gas tungsten arc welding based additive manufacturing (GTAW-AM) was carried out by printing 316L austenitic stainless steel on carbon steel substrate with different arc currents (140,160,180 A).Microstructure and ...The gas tungsten arc welding based additive manufacturing (GTAW-AM) was carried out by printing 316L austenitic stainless steel on carbon steel substrate with different arc currents (140,160,180 A).Microstructure and corrosion resistance of additive manufactured components were investigated.The results show that the microstructure of the GTAW-AM austenitic stainless steel is obviously changed by the arc current.With arc current increasing from 140 to 180 A,the austenite grains become coarse due to the effect of welding heat input.Meanwhile,the quantity of ferrites in the austenite matrix is decreased and the morphology transforms from lath to skeleton.Moreover,σ phases are finally formed under the arc currents of 180 A owing to high welding heat input.Therefore,as the microstructure transform into coarse-grained austenites,low-quantity ferrites and new-generated σ phases,the GTAW-AM austenitic stainless steel presents a significantly decrease in corrosion resistance.And the reduction of corrosion resistance is mainly due to the formation of σ phase as a result from consuming the large amounts of Cr element from the matrix.展开更多
The microstructures of as-cast ZK40,ZK40 with 2%(mass fraction)CaO and ZK40 with 1%(mass fraction)Y were investigated,and the intermetallic phase morphology and the distribution were characterised.By having discrete i...The microstructures of as-cast ZK40,ZK40 with 2%(mass fraction)CaO and ZK40 with 1%(mass fraction)Y were investigated,and the intermetallic phase morphology and the distribution were characterised.By having discrete intermetallic particles at the grain boundaries for the ZK40,the microstructure was modified to a semi-continuous network of intermetallic compounds along the grain boundaries for the ZK40 with CaO or Y additions.The CaO was not found in the microstructure.However,Ca was present in Ca2Mg6Zn3 intermetallic compounds which were formed during casting.Hydrogen evolution and electrochemical impedance spectroscopy tests revealed that the addition of CaO slightly enhanced the corrosion resistance whereas Y had a negative effect on the corrosion resistance of ZK40.Immersion tests showed that severe localised corrosion as well as corrosion along the intermetallic compounds played an important role in the corrosion process of ZK40-Y whereas the localised corrosion was not pronounced for ZK40 or ZK40?CaO alloys.Micro-segregation in theα-Mg matrix was notably higher for the ZK40 alloy compared with the modified alloys.The combination of this effect with a possible formation of a more stable corrosion layer for the ZK40-CaO was attributed as the main reason for an improved corrosion resistance for the ZK40-CaO alloy.展开更多
In order to improve the corrosion resistance of NiFe2O4 ceramics as inert anode,additive V2O5 was added to raw materials NiO and Fe2O3.The inert anodes of nickel-ferrite ceramics were prepared by powder metallurgic me...In order to improve the corrosion resistance of NiFe2O4 ceramics as inert anode,additive V2O5 was added to raw materials NiO and Fe2O3.The inert anodes of nickel-ferrite ceramics were prepared by powder metallurgic method and the static corrosion rate in Na3AlF6-Al2O3 was determined by mass loss measurement.The effect of V2O5 on sintering property and corrosion resistance was studied.The results show that V2O5 can promote the grain to develop completely and improve sintering property.EDS results show the reaction product Ni2FeVO6 distributes along the grain boundary.The corrosion tests show that V2O5 is beneficial to improving corrosion resistance remarkably.The reasons that V2O5 can improve the corrosion resistance must be V2O5 promoting the gains to develop completely and Ni2FeVO6 distributes along the grain boundary.The stable structure can control the chemical dissolution of ceramics anode and the reinforced grain boundary can control the grain-boundary corrosion rate.展开更多
Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environ...Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.展开更多
10Cu/(10NiO-NiFe2O4)cermets doped with Yb2O3 were prepared by conventional powder metallurgy technique.The effects of Yb2O3 content and sintering temperature on the relative density,phase composition,microstructure of...10Cu/(10NiO-NiFe2O4)cermets doped with Yb2O3 were prepared by conventional powder metallurgy technique.The effects of Yb2O3 content and sintering temperature on the relative density,phase composition,microstructure of the sintered cermets and the corrosion resistance to Na3AlF6-Al2O3 melts were investigated by sintered density test,XRD analysis and SEM.YbFeO3 phase,which distributes in the ceramics grain boundary as particles or film,is produced by the reaction between Yb2O3 and ceramics. The addition of Yb2O3 accelerates the sintering process of ceramics matrix,eliminates pores in the boundary and results in coarsened crystalline grain.The relative density of the cermets with about 1%(mass fraction)Yb2O3 sintered at 1 275℃increases to above 95%.Addition of about 1.0%Yb2O3 can inhibit obviously the corrosion of NiFe2O4 grain boundary and Cu phase in Na3AlF6-Al2O3 melts.展开更多
Two additives of ethylene diamine tetraacetic acid (EDTA) and ammonium chloride (NH4C1) were separately used in the electrodeposition of Zn-Ni alloy films from a deep eutectic solvent. The effects of these two add...Two additives of ethylene diamine tetraacetic acid (EDTA) and ammonium chloride (NH4C1) were separately used in the electrodeposition of Zn-Ni alloy films from a deep eutectic solvent. The effects of these two additives on electrodeposition behavior, composition, morphology, and corrosion performance of the Zn-Ni alloys were investigated. The electrodeposition behaviors of Zn-Ni alloy revealed by the cyclic voltammetry show that the addition of EDTA to the Zn-Ni electrolyte enhances the Zn incorporation into the alloy film while the addition of NH4C1 produces an opposite effect by suppressing Zn incorporation into the film. With an increase of EDTA concentration in the electrolyte, the Zn content of the Zn-Ni films increases, while the grain size of the deposits and the current efficiency of the plating process decrease. The increase of NH4C1 concentration in the electrolyte would significantly refine the grain size of the electrodeposited Zn-Ni films, reduce the Zn content and increase the cathodic current efficiency. The corrosion testing indicates that the barrier corrosion resistances of Zn-Ni films electrodeposited from NHnC1 containing electrolytes are superior to those electrodeposited from EDTA-containing electrolytes, which in turn are superior to those electrodeposited from additive-free electrolytes.展开更多
The high corrosion sensitivity and the potential bio-toxicity of Mg-Ag alloys limit their wide applications for the production of implanted devices. In the present work, Mn is added into the Mg-Ag alloy to optimize it...The high corrosion sensitivity and the potential bio-toxicity of Mg-Ag alloys limit their wide applications for the production of implanted devices. In the present work, Mn is added into the Mg-Ag alloy to optimize its corrosion behaviour. The corrosion behaviour of Mg-Ag-Mn alloys is investigated with the underlying microstructural factors examined. The Mg-Ag alloy with 2 wt% Mn exhibits the highest corrosion resistance after post-casting heat treatment at 440 ℃. The addition of Mn results in α-Mn phase with the incorporation of Fe, which suppresses the cathodic activity of impurity Fe. Further, heat treatment of the cast alloys homogenizes the distribution of Ag and promotes the precipitation of α-Mn phase. The former removes Ag segregations as potential cathodes;the latter promotes a more uniform distribution of cathodes and, therefore, prevents localized corrosion.展开更多
The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of m...The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersan...Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersant polyethylene glycol 6000(PEG6000)and anionic surfactant sodium dodecyl sulfate(SDS)were studied based on orthogonal experiment.The content and distribution of TiC deposited in the coatings were measured by EPMA and EDS.The thicknesses,phase compositions,microstructures and corrosion resistances of the codlings were cAarnined by using TT260 eddy current tuickncss gage,XRD,SEM and clcctrochcniical test,respectively.The results show that the experiment design of this study is the key to study the mutual effects among these additives.Each additive and their interactions all remarkably influence TiC content and corrosion resistance of the coatings.Smaller size TiC is much easier to migrate towards the anode,and the interaction between PEG6000 and SDS both effectively prevents its agglomeration and increases the number of its negative surface charges,which further increase the migration rate and the deposited uniformity of TiC and make TiC have more opportunity to deposit in the discharge channel.Thus,when smaller size TiC,PEG6000 and SDS are all added into the electrolyte,they could improve the anti-corrosion property of the coating to the largest extent attributed to higher TiC content and the densest microstructure of the coating.展开更多
Six new 1,3,4-thiadiazole Schiff base derivatives were synthesized and characterized by IR spectroscopy and ~1H NMR spectrometry, and their anti-corrosion properties and thermal stability were investigated via thermog...Six new 1,3,4-thiadiazole Schiff base derivatives were synthesized and characterized by IR spectroscopy and ~1H NMR spectrometry, and their anti-corrosion properties and thermal stability were investigated via thermogravimetric analysis(TGA) and copper strip corrosion test. The tribological behavior of the said Schiff base derivatives was evaluated on an Optimol SRV~?4 oscillating reciprocating friction and wear tester. The worn surfaces of the steel discs were investigated using a scanning electron microscope(SEM) and energy dispersive X-ray spectrometer(EDS). The test results indicated that these thiadiazole Schiff base derivatives possessed favourable thermal stability, corrosion inhibiting ability and the capability of improving the tribological characteristic of the base oil effectively. It is assumed that the adsorbed additives probably reacted with the steel surfaces during the friction process, resulting in the formation of a protective film composed of sulphates, sulphides and organic nitrogen compounds.展开更多
基金the financial support by National Key Research and Development Project(Grand No.2020YFC1107202)Guangdong Basic and Applied Basic Research Foundation(Grand No.2020A1515110754)+3 种基金MOE Key Lab of Disaster Forest and Control in Engineering,Jinan University(Grand No.20200904008)Educational Commission of Guangdong Province(Grand No.2020KTSCX012)the Fundamental Research Funds for Central Universities(Grand No.21620342)the support from National Natural Science Foundation of China,NSFC(Grand No.51775556)。
文摘Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.
基金This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology,Republic of Korea).
文摘Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using the existing joining methods.Herein,we propose for the first time an additive friction stir-welding(AFSW)using fine Al powder as an additive to improve the mechanical strength as well as corrosion resistance of AZ31B weld joints.AFSW is a solid-state welding method of forming a high-Al AZ31B joint via an in-situ reaction between pure Al powders filled in a machined groove and the AZ31B matrix.To optimize the process parameters,AFSW was performed under different rotational and transverse speeds,and number of passes,using tools with a square or screw pin.In particular,to fabricate a weld zone,where the Al was homogenously dispersed,the effects of the groove shape were investigated using three types of grooves:surface one-line groove,surface-symmetric grooves,and inserted symmetric grooves.The homogenous and defect-less AFS-welded AZ31B joint was successfully fabricated with the following optimal parameters:1400 rpm,25 mm/min,four passes,inserted symmetric grooves,and the tool with a square pin.The AFSW fully dissolved the additive Al intoα-Mg and in-situ precipitated Mg_(17)Al_(12)particles,which was confirmed via scanning electron microscopy,transmission electron microscope,and X-ray diffraction analyses.The microhardness,joint efficiency,and elongation at the fracture point of the AFS-welded AZ31B joint were 80 HV,101%,and 8.9%,respectively.These values are higher than those obtained for the FS-welded AZ31 joint in previous studies.The corrosion resistance of the AFS-welded AZ31B joint,evaluated via hydrogen evolution measurements and potentiodynamic polarization tests,was enhanced to 55%relative to the FS-welded AZ31B joint.
基金Project(2006KG03) supported by the Science and Technology Program of Shannxi Province, China
文摘Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).
基金financial support from the Ministry of Education and Science of the Russian Federation, Agreement No. 03.G25.31.0274 (27 May 2017)
文摘Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase;by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.
文摘Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.
基金supported by the Scientific Research Projects of Karabuk University (BAP) with Project No. KBUBAP-18-DS-008
文摘This study aims to investigate the influence of Sn addition on microstructure and corrosion properties of AS21 magnesium alloys. The AS21 alloys with 0, 0.5, 1 and 2 wt.% Sn additions were produced by low pressure die casting method. Microstructure characterizations were performed by optical and scanning electron microscopy. Corrosion properties of the alloys were examined by immersion and electrochemical corrosion tests in 3.5% NaCl solution. The microscopic results showed that AS21 alloy consisted of α-Mg, isolated β-Mg17Al12 and Chinese script type Mg2Si intermetallic phases. With increasing amount of Sn, the distribution of Mg2Si phase became more discrete and denser. After 2 wt.% Sn addition, a Sn-rich network structure formed throughout the microstructure and islands of Chinese script shape were made of shorter rods of Mg2Si phase. The constant immersion corrosion tests revealed that increasing Sn addition led to a continual decrease in the degradation of AS21 alloys, in which the corrosion rate of AS21 alloy was decreased by approximately 65% with 2 wt.% Sn addition. The electrochemical corrosion tests also showed that the corrosion resistance of AS21 alloy was gradually improved with increasing Sn content.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金This work is financially supported by the Fundamental Research Funds for the Central Universities,China(Nos.2302017FRF-IC-17-001,2302018FRF-IC-18-004,232019 FRF-IC-19-018,and 2302020FRF-IC-20-10)the China Postdoctoral Science Foundation(No.2021M700378).
文摘The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance.Addition of alloying elements is the simplest and effective method to improve the corrosion properties.Based on the low-cost alloy composition design,the corro-sion behavior of commercial Mg-3Al-1Zn(AZ31)alloy bearing minor Ca or Sn element was characterized by scanning Kelvin probe force microscopy,hydrogen evolution,electrochemical measurements,and corrosion morphology analysis.Results revealed that the potential differ-ence of Al_(2)Ca/α-Mg and Mg_(2)Sn/α-Mg was(230±19)mV and(80±6)mV,respectively,much lower than that of Al_(8)Mn_(5)/α-Mg(430±31)mV in AZ31 alloy,which illustrated that AZ31-0.2Sn alloy performed the best corrosion resistance,followed by AZ31-0.2Ca,while AZ31 al-loy exhibited the worst corrosion resistance.Moreover,Sn dissolved into matrix obviously increased the potential ofα-Mg and participated in the formation of dense SnO_(2) film at the interface of matrix,while Ca element was enriched in the corrosion product layer,resulting in the cor-rosion product layer of AZ31-0.2Ca/Sn alloys more compact,stable,and protective than AZ31 alloy.Therefore,AZ31 alloy bearing 0.2wt%Ca or Sn element exhibited excellent balanced properties,which is potential to be applied in commercial more comprehensively.
基金the first Singapore-Germany Academic-Industry(2+2)international collaboration grant(Grant No.:A1890b0050)Agency for Science,Technology and Research(A^(*)STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant No.A1881b0061support of a scholarship from the A^(*)STAR Graduate Academy。
文摘Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluids by electrochemical and hydrogen evolution measurements.The corrosion rates of the BJP specimens were significantly higher than solid controls,even after accounting for their larger surface areas,suggesting that the BJP microstructure is detrimental to corrosion performance.X-ray computed tomography revealed nonuniform corrosion within the porous structure,with corrosion products forming on the pore walls.Impregnating the pores with hydroxyapatite or polymers greatly improved the corrosion resistance of the BJP samples.
基金supported by the Program of Shanghai Subject Chief Scientist (No.08XD14020)the Science and Technology Commission of Shanghai Municipality (No.08JC1412200)China Postdoctoral Science Foundation (No.20080430657)
文摘To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) alloys in a 5wt% NaCl solution was investigated using immersion test and electrochemical measurements. The results of immersion test show that Mg-5Zn-0.3Zr-2Nd alloy exhibits the best corrosion resistance among the tested alloys. Electrochemical measurements show that secondary phases in RE-containing Mg-5Zn-0.3Zr alloys behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. The additions of Nd and Y into Mg-5Zn-0.3Zr alloy also improve the compactness of the corrosion product film and are beneficial to the corrosion resistance.
基金Funded by National Key Research and Development Program of China(No.2017YFE0100100)Fundamental Research Funds for the Central Universities(No.2018B59714)Basic Research Program of Nantong(No.JC2019063)。
文摘The gas tungsten arc welding based additive manufacturing (GTAW-AM) was carried out by printing 316L austenitic stainless steel on carbon steel substrate with different arc currents (140,160,180 A).Microstructure and corrosion resistance of additive manufactured components were investigated.The results show that the microstructure of the GTAW-AM austenitic stainless steel is obviously changed by the arc current.With arc current increasing from 140 to 180 A,the austenite grains become coarse due to the effect of welding heat input.Meanwhile,the quantity of ferrites in the austenite matrix is decreased and the morphology transforms from lath to skeleton.Moreover,σ phases are finally formed under the arc currents of 180 A owing to high welding heat input.Therefore,as the microstructure transform into coarse-grained austenites,low-quantity ferrites and new-generated σ phases,the GTAW-AM austenitic stainless steel presents a significantly decrease in corrosion resistance.And the reduction of corrosion resistance is mainly due to the formation of σ phase as a result from consuming the large amounts of Cr element from the matrix.
基金the Alexander von Humboldt foundation for the provision of financial support in the form of post-doctoral fellowship
文摘The microstructures of as-cast ZK40,ZK40 with 2%(mass fraction)CaO and ZK40 with 1%(mass fraction)Y were investigated,and the intermetallic phase morphology and the distribution were characterised.By having discrete intermetallic particles at the grain boundaries for the ZK40,the microstructure was modified to a semi-continuous network of intermetallic compounds along the grain boundaries for the ZK40 with CaO or Y additions.The CaO was not found in the microstructure.However,Ca was present in Ca2Mg6Zn3 intermetallic compounds which were formed during casting.Hydrogen evolution and electrochemical impedance spectroscopy tests revealed that the addition of CaO slightly enhanced the corrosion resistance whereas Y had a negative effect on the corrosion resistance of ZK40.Immersion tests showed that severe localised corrosion as well as corrosion along the intermetallic compounds played an important role in the corrosion process of ZK40-Y whereas the localised corrosion was not pronounced for ZK40 or ZK40?CaO alloys.Micro-segregation in theα-Mg matrix was notably higher for the ZK40 alloy compared with the modified alloys.The combination of this effect with a possible formation of a more stable corrosion layer for the ZK40-CaO was attributed as the main reason for an improved corrosion resistance for the ZK40-CaO alloy.
基金Project(2006A050)supported by Science and Technology Foundation of China University of Mining and Technology,ChinaProject(0702058C)supported by Postdoctoral Scientific Research Foundation of Jiangsu Province,China
文摘In order to improve the corrosion resistance of NiFe2O4 ceramics as inert anode,additive V2O5 was added to raw materials NiO and Fe2O3.The inert anodes of nickel-ferrite ceramics were prepared by powder metallurgic method and the static corrosion rate in Na3AlF6-Al2O3 was determined by mass loss measurement.The effect of V2O5 on sintering property and corrosion resistance was studied.The results show that V2O5 can promote the grain to develop completely and improve sintering property.EDS results show the reaction product Ni2FeVO6 distributes along the grain boundary.The corrosion tests show that V2O5 is beneficial to improving corrosion resistance remarkably.The reasons that V2O5 can improve the corrosion resistance must be V2O5 promoting the gains to develop completely and Ni2FeVO6 distributes along the grain boundary.The stable structure can control the chemical dissolution of ceramics anode and the reinforced grain boundary can control the grain-boundary corrosion rate.
基金the China Scholarship Council(CSC)for funding(no.201806310116)。
文摘Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.
基金Project(2008AA030501)supported by the High-tech Research and Development Program of ChinaProject(200733)supported by the Postdoctoral Science Fund of Central South University,ChinaProject(50721003)supported by the National Natural Science Foundation for Innovation Group of China
文摘10Cu/(10NiO-NiFe2O4)cermets doped with Yb2O3 were prepared by conventional powder metallurgy technique.The effects of Yb2O3 content and sintering temperature on the relative density,phase composition,microstructure of the sintered cermets and the corrosion resistance to Na3AlF6-Al2O3 melts were investigated by sintered density test,XRD analysis and SEM.YbFeO3 phase,which distributes in the ceramics grain boundary as particles or film,is produced by the reaction between Yb2O3 and ceramics. The addition of Yb2O3 accelerates the sintering process of ceramics matrix,eliminates pores in the boundary and results in coarsened crystalline grain.The relative density of the cermets with about 1%(mass fraction)Yb2O3 sintered at 1 275℃increases to above 95%.Addition of about 1.0%Yb2O3 can inhibit obviously the corrosion of NiFe2O4 grain boundary and Cu phase in Na3AlF6-Al2O3 melts.
基金Projects(51271169,51001089) supported by the National Natural Science Foundation of China
文摘Two additives of ethylene diamine tetraacetic acid (EDTA) and ammonium chloride (NH4C1) were separately used in the electrodeposition of Zn-Ni alloy films from a deep eutectic solvent. The effects of these two additives on electrodeposition behavior, composition, morphology, and corrosion performance of the Zn-Ni alloys were investigated. The electrodeposition behaviors of Zn-Ni alloy revealed by the cyclic voltammetry show that the addition of EDTA to the Zn-Ni electrolyte enhances the Zn incorporation into the alloy film while the addition of NH4C1 produces an opposite effect by suppressing Zn incorporation into the film. With an increase of EDTA concentration in the electrolyte, the Zn content of the Zn-Ni films increases, while the grain size of the deposits and the current efficiency of the plating process decrease. The increase of NH4C1 concentration in the electrolyte would significantly refine the grain size of the electrodeposited Zn-Ni films, reduce the Zn content and increase the cathodic current efficiency. The corrosion testing indicates that the barrier corrosion resistances of Zn-Ni films electrodeposited from NHnC1 containing electrolytes are superior to those electrodeposited from EDTA-containing electrolytes, which in turn are superior to those electrodeposited from additive-free electrolytes.
基金supported by the National Natural Science Foundation of China(Nos.52001128 and 52371065)the Hubei Provincial Natural Science Foundation of China(No.2023AFB637).
文摘The high corrosion sensitivity and the potential bio-toxicity of Mg-Ag alloys limit their wide applications for the production of implanted devices. In the present work, Mn is added into the Mg-Ag alloy to optimize its corrosion behaviour. The corrosion behaviour of Mg-Ag-Mn alloys is investigated with the underlying microstructural factors examined. The Mg-Ag alloy with 2 wt% Mn exhibits the highest corrosion resistance after post-casting heat treatment at 440 ℃. The addition of Mn results in α-Mn phase with the incorporation of Fe, which suppresses the cathodic activity of impurity Fe. Further, heat treatment of the cast alloys homogenizes the distribution of Ag and promotes the precipitation of α-Mn phase. The former removes Ag segregations as potential cathodes;the latter promotes a more uniform distribution of cathodes and, therefore, prevents localized corrosion.
文摘The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.
基金The authors are grateful to the Department of Science&Technology of Gansu Province(China)for the support of the Creative Research Group Fund Grant(1111RJDA011)the Open Fund(SKLAB02015006)from State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals(China).
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersant polyethylene glycol 6000(PEG6000)and anionic surfactant sodium dodecyl sulfate(SDS)were studied based on orthogonal experiment.The content and distribution of TiC deposited in the coatings were measured by EPMA and EDS.The thicknesses,phase compositions,microstructures and corrosion resistances of the codlings were cAarnined by using TT260 eddy current tuickncss gage,XRD,SEM and clcctrochcniical test,respectively.The results show that the experiment design of this study is the key to study the mutual effects among these additives.Each additive and their interactions all remarkably influence TiC content and corrosion resistance of the coatings.Smaller size TiC is much easier to migrate towards the anode,and the interaction between PEG6000 and SDS both effectively prevents its agglomeration and increases the number of its negative surface charges,which further increase the migration rate and the deposited uniformity of TiC and make TiC have more opportunity to deposit in the discharge channel.Thus,when smaller size TiC,PEG6000 and SDS are all added into the electrolyte,they could improve the anti-corrosion property of the coating to the largest extent attributed to higher TiC content and the densest microstructure of the coating.
文摘Six new 1,3,4-thiadiazole Schiff base derivatives were synthesized and characterized by IR spectroscopy and ~1H NMR spectrometry, and their anti-corrosion properties and thermal stability were investigated via thermogravimetric analysis(TGA) and copper strip corrosion test. The tribological behavior of the said Schiff base derivatives was evaluated on an Optimol SRV~?4 oscillating reciprocating friction and wear tester. The worn surfaces of the steel discs were investigated using a scanning electron microscope(SEM) and energy dispersive X-ray spectrometer(EDS). The test results indicated that these thiadiazole Schiff base derivatives possessed favourable thermal stability, corrosion inhibiting ability and the capability of improving the tribological characteristic of the base oil effectively. It is assumed that the adsorbed additives probably reacted with the steel surfaces during the friction process, resulting in the formation of a protective film composed of sulphates, sulphides and organic nitrogen compounds.