The mechanical properties, corrosion resistance and microstructures of high performance steel (HPS) was investigated by tensile testing machine, Charpy V-Notch (CVN) testing machine, cyclic immersion corrosion tes...The mechanical properties, corrosion resistance and microstructures of high performance steel (HPS) was investigated by tensile testing machine, Charpy V-Notch (CVN) testing machine, cyclic immersion corrosion tester, XRD, optical microscopy (OM), scanning electron microscopy (SEM), and electron probe micro-analyzer (EPMA). The results showed that significant differences existed in the tensile strength, yield strength and impact toughness between HPS and PCS. After 72 h cyclic immersion accelerated corrosion test, the inner rust layer on HPS was com- posed of a-FeOOH phase and denser than that on PCS that was a mixture of a-FeOOH and Fe3 04. The rust formed on HPS provides better protection and HPS has lower corrosion rates than PCS. Copper and chromium in HPS en- rich in the rust layer and enhance the compactness of the rust layer. Based on the results of the accelerated corrosion tests and rust layer analysis, the roles of Cu and Cr against corrosion are discussed, providing HPS with chemical specification which has been industrially successful to produce weathering steel for bridge structure.展开更多
文摘The mechanical properties, corrosion resistance and microstructures of high performance steel (HPS) was investigated by tensile testing machine, Charpy V-Notch (CVN) testing machine, cyclic immersion corrosion tester, XRD, optical microscopy (OM), scanning electron microscopy (SEM), and electron probe micro-analyzer (EPMA). The results showed that significant differences existed in the tensile strength, yield strength and impact toughness between HPS and PCS. After 72 h cyclic immersion accelerated corrosion test, the inner rust layer on HPS was com- posed of a-FeOOH phase and denser than that on PCS that was a mixture of a-FeOOH and Fe3 04. The rust formed on HPS provides better protection and HPS has lower corrosion rates than PCS. Copper and chromium in HPS en- rich in the rust layer and enhance the compactness of the rust layer. Based on the results of the accelerated corrosion tests and rust layer analysis, the roles of Cu and Cr against corrosion are discussed, providing HPS with chemical specification which has been industrially successful to produce weathering steel for bridge structure.