Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosi...This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosive crack width involving the mutual impacts between adjacent measuring points is established. The calculation model for steel bar corrosion rate for single point is obtained through quantitative analysis and accelerated corrosion tests on more than 70 reinforced cubic members. Two methods are suggested by combining two models, the correction and the corrosion calculation ones. Electrolyte accelerated cor- rosion tests on seven beams are carried out to verify these methods. The experimental results show that the ratio between the maximum corrosion rate by the indirect method and the measured average value ranges from 1.4 to 2.4, and the indirect method is shown to be an effective method for calculating the maximum corrosion rate.展开更多
Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.How...Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.However,the chemical stability of Mg alloys is poor,especially in the corrosive medium environment with high stress corrosion sensitivity,which causes sudden damage to structural components and restricts their application field.In recent years,owing to the increasing failure rate of engineering structures caused by stress corrosion of Mg alloys,it has become necessary to understand and pay more attention to the stress corrosion cracking(SCC)behavior of Mg alloys.In this paper,the SCC mechanisms and test methods of Mg alloys have been summarized.The recent research progress on SCC of Mg alloys has been reviewed from the aspects of alloying,preparation process,surface modification,corrosive medium,and strain rate.More importantly,future research trends in the field of SCC of Mg alloys have also been proposed.展开更多
The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele...The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.展开更多
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t...Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.展开更多
Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fr...Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fractography of stress corrosion cracking(SCC) samples were observed by optical and scanning electron microscopy, respectively. An X-ray diffraction study was carried out on the fractured surfaces of the SCC specimens. The results indicated that a strong basal fiber was formed on the base material, whereas the grains in the stir zone were reoriented with their most basal planes tilted 25 o to the welding direction. Feather-like twins and hydride formed under slow strain rate tensile(SSRT) stress in air and aggressive solutions, respectively. Transgranular cracks propagated and finally failed on the retreating side in the solution. The hydride phase confirmed to sit on the fracture surface demonstrated the delayed hydride cracking(DHC) mechanism of the alloy.展开更多
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties...The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.展开更多
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed...2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface.展开更多
Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx...Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx and 7xxx aluminium alloys are susceptible to SCC. Among them, 7xxx series aluminium alloys have specific application in aerospace, military and structural industries due to superior mechanical properties. In these high strength 7xxx aluminium alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service. The understanding of SCC behaviour possesses critical challenge for this alloy. The main aim of this review paper is to understand the effect of constituent alloying elements on the response of microstructural variation in various heat-treated conditions on SCC behavior. Further, review was made for improving the SCC resistance using thermomechanical treatments and by surface modifications of 7xxx alloys. Apart from a brief review on SCC of 7xxx alloys, this paper presents the effect of stress and pre-strain, effect of constituent alloying elements in the alloy, and the effect of environments on SCC behaviour. In addition, the SCC behaviours of weldments, 7xxx metal matrix composites and also laser surface modifications were also reviewed.展开更多
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was in...Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.展开更多
The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microsco...The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.展开更多
The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/...The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution.展开更多
The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with sc...The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with scanning electron microscopy(SEM)and high-angle angular dark field scanning transmission electron microscopy(HAADF-STEM)microstructural examinations.The results showed that the tensile strength enhancement of high Zn-containing Al-Zn-Mg-Cu alloys was mainly attributed to the high density nano-scale matrix precipitates.The SCC plateau velocity for the alloy with 11.0 wt.%Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.%Zn,which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones.The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features,grain-boundary microchemistry,and electrochemical properties.展开更多
The enrichment of chloride anion within the occluded cell (OC) for Type 304 austenitic stainless steel in low chloride concentration solution has been investigated by means of a simulated OC. The influence of the en...The enrichment of chloride anion within the occluded cell (OC) for Type 304 austenitic stainless steel in low chloride concentration solution has been investigated by means of a simulated OC. The influence of the enrichment of chloride anion on stress corrosion crack (SCC) of Type 304 stainless steel has been studied. It was observed that the amount of chloride anion migration was proportional to the charge flowing through the anode. Owning to the effects of enrichment of chloride anion, low chloride concentration solution could induce SCC for Type 304 stainless steel.展开更多
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added ...Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.展开更多
The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (S...The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.展开更多
Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensi...Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.展开更多
The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties an...The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.展开更多
5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation beh...5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.展开更多
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金Project supported by the Western Transportation Construction Sci-ence&Technology Program,Ministry of Transport of China(No.201332849A090)
文摘This paper deals with a correction method for corrosive crack width caused by non-uniform corrosion. Considering the corrosion cracking characteristics of a reinforced concrete structure, a correction model of corrosive crack width involving the mutual impacts between adjacent measuring points is established. The calculation model for steel bar corrosion rate for single point is obtained through quantitative analysis and accelerated corrosion tests on more than 70 reinforced cubic members. Two methods are suggested by combining two models, the correction and the corrosion calculation ones. Electrolyte accelerated cor- rosion tests on seven beams are carried out to verify these methods. The experimental results show that the ratio between the maximum corrosion rate by the indirect method and the measured average value ranges from 1.4 to 2.4, and the indirect method is shown to be an effective method for calculating the maximum corrosion rate.
基金supported by the National Natural Science Foundation of China(52071175)the Key Research&Development Plan(Social Development)of Jiangsu Province(BE2020702)。
文摘Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.However,the chemical stability of Mg alloys is poor,especially in the corrosive medium environment with high stress corrosion sensitivity,which causes sudden damage to structural components and restricts their application field.In recent years,owing to the increasing failure rate of engineering structures caused by stress corrosion of Mg alloys,it has become necessary to understand and pay more attention to the stress corrosion cracking(SCC)behavior of Mg alloys.In this paper,the SCC mechanisms and test methods of Mg alloys have been summarized.The recent research progress on SCC of Mg alloys has been reviewed from the aspects of alloying,preparation process,surface modification,corrosive medium,and strain rate.More importantly,future research trends in the field of SCC of Mg alloys have also been proposed.
基金Projects(2010CB731701,2012CB619502)supported by the National Basic Research Program of ChinaProjects(51201186,51327902)supported by the National Natural Science Foundation of China
文摘The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.
基金Project(2012CB619505)supported by the National Basic Research Program of ChinaProject(NCET-13-0370)supported by the Program for New Century Excellent Talents in Universities of China
文摘Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.
文摘Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fractography of stress corrosion cracking(SCC) samples were observed by optical and scanning electron microscopy, respectively. An X-ray diffraction study was carried out on the fractured surfaces of the SCC specimens. The results indicated that a strong basal fiber was formed on the base material, whereas the grains in the stir zone were reoriented with their most basal planes tilted 25 o to the welding direction. Feather-like twins and hydride formed under slow strain rate tensile(SSRT) stress in air and aggressive solutions, respectively. Transgranular cracks propagated and finally failed on the retreating side in the solution. The hydride phase confirmed to sit on the fracture surface demonstrated the delayed hydride cracking(DHC) mechanism of the alloy.
基金the Tianjin Key Laboratory of Fastening and Connection Technology Enterprises 2022—2023,China(No.TKLF2022-02-C-02)the technical support from the School of Materials Science and Engineering,Central South University,China.
文摘The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.
基金supported by the Research and Development Project of“Jianbing”in Zhejiang Province(2024C01085)Natural Science and Foundation of Ningbo(2022J052).
文摘2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface.
文摘Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx and 7xxx aluminium alloys are susceptible to SCC. Among them, 7xxx series aluminium alloys have specific application in aerospace, military and structural industries due to superior mechanical properties. In these high strength 7xxx aluminium alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service. The understanding of SCC behaviour possesses critical challenge for this alloy. The main aim of this review paper is to understand the effect of constituent alloying elements on the response of microstructural variation in various heat-treated conditions on SCC behavior. Further, review was made for improving the SCC resistance using thermomechanical treatments and by surface modifications of 7xxx alloys. Apart from a brief review on SCC of 7xxx alloys, this paper presents the effect of stress and pre-strain, effect of constituent alloying elements in the alloy, and the effect of environments on SCC behaviour. In addition, the SCC behaviours of weldments, 7xxx metal matrix composites and also laser surface modifications were also reviewed.
基金supported by the National Science & Technology Infrastructure Development Program of China(No.2005DKA10400)
文摘Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.
基金Project(2006CB605004) supported by the National Basic Research Program of China
文摘The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution.
基金financial supports from the National Key Research and Development Program of China(No.2016-YFB0300801)the State Key Laboratory of High Performance Complex Manufacturing of Central South University,China(No.ZZYJKT2020-03)the National Key Laboratory of Science and Technology for National Defence on High-strength Lightweight Structural Materials of China(No.20190104)。
文摘The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with scanning electron microscopy(SEM)and high-angle angular dark field scanning transmission electron microscopy(HAADF-STEM)microstructural examinations.The results showed that the tensile strength enhancement of high Zn-containing Al-Zn-Mg-Cu alloys was mainly attributed to the high density nano-scale matrix precipitates.The SCC plateau velocity for the alloy with 11.0 wt.%Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.%Zn,which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones.The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features,grain-boundary microchemistry,and electrochemical properties.
文摘The enrichment of chloride anion within the occluded cell (OC) for Type 304 austenitic stainless steel in low chloride concentration solution has been investigated by means of a simulated OC. The influence of the enrichment of chloride anion on stress corrosion crack (SCC) of Type 304 stainless steel has been studied. It was observed that the amount of chloride anion migration was proportional to the charge flowing through the anode. Owning to the effects of enrichment of chloride anion, low chloride concentration solution could induce SCC for Type 304 stainless steel.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB605005)Shanghai Municipal Committee of Science and Technology of china(Grant No. 005207019,Grant No. 08520708000)
文摘Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.
基金financially supported by the State Key Fundamental Research Program of China (No. 2005CB623706)
文摘The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.
文摘Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.
基金Project(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(41423040204)supported by National Key Laboratory of Light Weight and High Strength Structural Materials Equipment Pre-research Laboratory Foundation,China。
文摘The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.
基金financial support and Program of the Ministry of Education in China (2011)。
文摘5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.