Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clu...Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clusters lie between 0.1 and 0.6,and the redshift range of their arcs is from 0.4 to 4.9.These clusters are selected carefully from strong gravitational lensing systems which have both X-ray satellite observations and optical giant luminous arcs with known redshifts.Giant arcs usually appear in the central region of clusters,where mass can be traced with luminosity quite well.Based on gravitational lensing theory and a cluster mass distribution model,we can derive a ratio using two angular diameter distances.One is the distance between lensing sources and the other is that between the deflector and the source. Since angular diameter distance relies heavily on cosmological geometry,we can use these ratios to constrain cosmological models.Moreover,X-ray gas fractions of galaxy clusters can also be a cosmological probe.Because there are a dozen parameters to be fitted,we introduce a new analytic algorithm,Powell's UOBYQA(Unconstrained Optimization By Quadratic Approximation) ,to accelerate our calculation.Our result demonstrates that this algorithm is an effective fitting method for such a continuous multi-parameter constraint.We find an interesting fact that these two approaches are separately sensitive toΩΛandΩM.By combining them,we can get reasonable fitting values of basic cosmological parameters:ΩM=0.26 +0.04 -0.04,andΩΛ=0.82 +0.14 -0.16.展开更多
In this work, a computer optimization model has been developed that allows one to load the initial data of observations of supernovae 1a into a table and, in simple steps, by searching for the best fit between observa...In this work, a computer optimization model has been developed that allows one to load the initial data of observations of supernovae 1a into a table and, in simple steps, by searching for the best fit between observations and theory, obtain the values of the parameters of cosmological models. The optimization is carried out assuming that the absolute magnitude of supernovae is not constant, but evolves with time. It is assumed that the dependence of the absolute magnitude on the redshift is linear: M = M( z = 0) + ε<sub>c </sub>z, where ε<sub>c</sub> is the evolution coefficient of the absolute magnitude of type 1a supernovae. In the case of a flat universe ( Ω<sub>M</sub> + Ω<sub>Λ</sub> = 1 ), the best fit between theory and observation is εc </sub>= 0.304. In this case, for the cosmological parameters we obtain Ω<sub>Λ</sub> = 0.000, Ω<sub>M</sub><sub></sub> =1.000. Naturally, this result exactly coincides with the simulation result for the model with zero cosmological constant ( εc</sub> = 0.304, q<sub>0</sub> = 0.500 ). Within the framework of the ΛCDM model, without restriction on space curvature ( Ω<sub>M</sub> + Ω<sub>Λ</sub>+ Ω<sub>K</sub><sub></sub> = 1 ), we obtain the following values: εc</sub> </sub>= 0.304, ΩΛ</sub> = 0.000, ΩM </sub>= 1.000, Ω<sub>K</sub></sub></sub></sub> =0.000. Those, this case also leads to a flat model of the Universe ( Ω<sub>K</sub><sub></sub></sub></sub> =0.000 ). In this work, the critical influence of the absolute magnitude M of type 1a supernovae on the cosmological parameters is also shown. In particular, it was found that a change in this value by only 0.4<sup>m </sup>(from -19.11 to -18.71) leads to a change in the parameters from ΩΛ</sub> = 0.7 and ΩM</sub></sub> = 0.3 to ΩΛ</sub> = 0 and ΩM</sub> =1.展开更多
We have investigated late time acceleration for a spatially fiat dust filled Universe in Brans- Dicke theory in the presence of a positive cosmological constant A. Expressions for Hubble's constant, luminosity distan...We have investigated late time acceleration for a spatially fiat dust filled Universe in Brans- Dicke theory in the presence of a positive cosmological constant A. Expressions for Hubble's constant, luminosity distance and apparent magnitude have been obtained for our model. The theoretical results are compared with observed values of the latest 287 high redshift (0.3 ≤ z ≤1.4) Type Ia supernova data taken from the Union 2.1 compilation to estimate present values of matter and dark energy parame- ters, (Ωm)0 and (ΩA)0. We have also estimated the present value of Hubble's constant H0 in light of an updated sample of Hubble parameter measurements including 19 independent data points. The results are found to be in good agreement with recent astrophysical observations. We also calculated various physical parameters such as matter and dark energy densities, present age of the Universe and decelera- tion parameter. The value for Brans-Dicke-coupling constant ω is set to be 40 000 based on accuracy of solar system tests and recent experimental evidence.展开更多
From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle measured by the Planck Collaboration, we obtain Ωm=0.2724±0.0047, and h+0.020&sd...From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle measured by the Planck Collaboration, we obtain Ωm=0.2724±0.0047, and h+0.020⋅∑mv=0.7038±0.0060, assuming flat space and a cosmological constant. We combine this result with the 2018 Planck “TT, TE, EE + lowE + lensing” analysis, and update a study of ∑mv with new direct measurements of σ8, and obtain ∑mv=0.27±0.08 eV assuming three nearly degenerate neutrino eigenstates. Measurements are consistent with Ωk=0, and Ωde(a)=ΩΛ constant.展开更多
Cosmological Models frequently suggest the existence of physical, quantities, e.g. dark energy, we cannot yet observe and measure directly. Their values are obtained indirectly setting them equal to values and accurac...Cosmological Models frequently suggest the existence of physical, quantities, e.g. dark energy, we cannot yet observe and measure directly. Their values are obtained indirectly setting them equal to values and accuracy of the associated model parameters which best fit model and observation. Apparently results are so accurate that some researchers speak of precision cosmology. The accuracy attributed to these indirect values of the physical quantities however does not include the uncertainty of the model used to get them. We suggest a Confidence Level Estimator to be attached to these indirect measurements and apply it to current cosmological models.展开更多
Gravitational waves(GWs)from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history.In the next decades,it is anticipated that we could obtain the multi-band GW standard sir...Gravitational waves(GWs)from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history.In the next decades,it is anticipated that we could obtain the multi-band GW standard siren data(from nanohertz to a few hundred hertz),which are expected to play an important role in cosmological parameter estimation.In this work,we provide,for the first time to the best of our knowledge,joint constraints on cosmological parameters using the future multi-band GW standard siren observations.We simulate the multi-band GW standard sirens based on the SKA-era pulsar timing array(PTA),Taiji observatory,and Cosmic Explorer(CE)to perform cosmological analysis.In theΛCDM model,we find that the joint PTA+Taiji+CE data could provide a tight constraint on the Hubble constant with a 0.5%precision.Moreover,PTA+Taiji+CE could break the cosmological parameter degeneracies generated by CMB,especially in the dynamical dark energy models.When combining the PTA+Taiji+CE data with the CMB data,the constraint precisions of?_(m)and H_(0)are 1.0%and 0.3%,respectively,meeting the standard of precision cosmology.The joint CMB+PTA+Taiji+CE data giveσ(_(w))=0.028 in the wCDM model andσ(w_(0))=0.11 andσ(w_(a))=0.32 in the w_(0)w_(a)CDM model,which are comparable with or close to the latest constraint results by CMB+BAO+SN.In conclusion,the future multi-band GW observations are expected to be used for exploring the nature of dark energy and measuring the Hubble constant.展开更多
The overabundance of the red and massive candidate galaxies observed by the James Webb Space Telescope(JWST)implies efficient structure formation or large star formation efficiency at high redshift z~10.In the scenari...The overabundance of the red and massive candidate galaxies observed by the James Webb Space Telescope(JWST)implies efficient structure formation or large star formation efficiency at high redshift z~10.In the scenario of a low or moderate star formation efficiency,because massive neutrinos tend to suppress the growth of structure of the universe,the JWST observation tightens the upper bound of the neutrino masses.Assuming A cold dark matter cosmology and a star formation efficiency∈[0.05,0.3](flat prior),we perform joint analyses of Planck+JWST and Planck+BAO+JWST,and obtain improved constraints∑m_(ν)<0.196 eV and ∑m_(ν)+<0.111 eV at 95% confidence level,respectively.Based on the above assumptions,the inverted mass ordering,which implies ∑m_(ν)≥0.1 eV,is excluded by Planck+BAO+JWST at 92.7% confidence level.展开更多
We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and i...We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and is computationally efficient,typically taking a few seconds on a personal laptop for a given set of cosmological parameters.The high efficiency of the code allows a quick estimation of the tension between cosmological models and the red candidate massive galaxies released by the James Webb Space Telescope,as well as scanning the theory space with the Markov Chain Monte Carlo method.As an example application,we use the tool to study the cosmological implication of the candidate galaxies presented in Labbéet al.The standard Λcold dark matter(ΛCDM)model is well consistent with the data if the star formation efficiency can reach~0.3 at high redshift.For a low star formation efficiency ε~0.1,theΛCDM model is disfavored at~2σ-3σconfidence level.展开更多
The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in ...The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia.展开更多
We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-...We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.展开更多
The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring...The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.展开更多
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
This paper reports a detailed study of generalized Chaplygin gas(GCG)with power law form of scale factor and truncated form of the scale factor using binomial expansion in both interacting and non-interacting scenario...This paper reports a detailed study of generalized Chaplygin gas(GCG)with power law form of scale factor and truncated form of the scale factor using binomial expansion in both interacting and non-interacting scenarios along with its cosmological consequences,studied in terms of equation of state(EoS)parameter.In the non-interacting scenario,the EoS parameter behaves as quintessence in both forms of the scale factor.In the interacting scenario,the EoS parameter behaves as phantom and for the truncated form of the scale factor,it violates the constraints of the positive parameterα.The cosmological implementation of GCG interacting with pressureless dark matter is investigated in the framework of f(T)modified gravity,where T is the torsion scalar in teleparallelism.The interaction term is directly proportional to the GCG density with positive coupling constant.In f(T)gravity,the EoS is behaving like phantom.The stability of the reconstructed model is investigated and it is found to be stable against small gravitational perturbations,i.e.,the squared speed of sound is non-negative and an increasing function of cosmic time t.We have observed that our reconstructed f(T)model satisfies one of the sufficient conditions of a realistic reconstructed model and it is consistent with the CMB constraints and primordial nucleosynthesis.Cosmology of primordial perturbations has also been analyzed and the self-interacting potential has been found to be an increasing function of cosmic time t.展开更多
In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Uni...In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.展开更多
Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmologic...Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmological models using observa- tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy mod- els at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali- Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi- nally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.展开更多
We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,L...We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.展开更多
The dependence of chaos on two parameters of the cosmological constant and the self-interacting coefficient in the imaginary phase space for a closed Friedman- Robertson-Walker (FRW) universe with a conformally coup...The dependence of chaos on two parameters of the cosmological constant and the self-interacting coefficient in the imaginary phase space for a closed Friedman- Robertson-Walker (FRW) universe with a conformally coupled scalar field, as the full understanding of the dependence in real phase space, is investigated numerically. It is found that Poincar6 plots for the two parameters less than 1 are almost the same as those in the absence of the cosmological constant and self-interacting terms. For energies below the energy threshold of 0.5 for the imaginary problem in which there are no cosmological constant and self-interacting terms, an abrupt transition to chaos occurs when at least one of the two parameters is 1. However, the strength of the chaos does not increase for energies larger than the threshold. For other situations of the two parameters larger than 1, chaos is weaker, and even disappears as the two parameters increase.展开更多
We explore the problems of degeneracy and discreteness in the standard cosmological model(ΛCDM). We use the Observational Hubble Data(OHD) and the type Ia supernovae(SNe Ia) data to study this issue. In order t...We explore the problems of degeneracy and discreteness in the standard cosmological model(ΛCDM). We use the Observational Hubble Data(OHD) and the type Ia supernovae(SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way of model differentiation when using different models to fit the observational data.展开更多
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional t...Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m(R is a scale factor and m is a constant).A variety of solutions is presented.The physical significance of the cosmological models has also been discussed.展开更多
基金Supported by the National Natural Science Foundation of Chinasupported by the National Science Foundation of China under the Distinguished Young Scholar Grant 10825313by the Ministry of Science and Technology's National Basic Science Program(Project 973)under grant No.2007CB815401
文摘Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clusters lie between 0.1 and 0.6,and the redshift range of their arcs is from 0.4 to 4.9.These clusters are selected carefully from strong gravitational lensing systems which have both X-ray satellite observations and optical giant luminous arcs with known redshifts.Giant arcs usually appear in the central region of clusters,where mass can be traced with luminosity quite well.Based on gravitational lensing theory and a cluster mass distribution model,we can derive a ratio using two angular diameter distances.One is the distance between lensing sources and the other is that between the deflector and the source. Since angular diameter distance relies heavily on cosmological geometry,we can use these ratios to constrain cosmological models.Moreover,X-ray gas fractions of galaxy clusters can also be a cosmological probe.Because there are a dozen parameters to be fitted,we introduce a new analytic algorithm,Powell's UOBYQA(Unconstrained Optimization By Quadratic Approximation) ,to accelerate our calculation.Our result demonstrates that this algorithm is an effective fitting method for such a continuous multi-parameter constraint.We find an interesting fact that these two approaches are separately sensitive toΩΛandΩM.By combining them,we can get reasonable fitting values of basic cosmological parameters:ΩM=0.26 +0.04 -0.04,andΩΛ=0.82 +0.14 -0.16.
文摘In this work, a computer optimization model has been developed that allows one to load the initial data of observations of supernovae 1a into a table and, in simple steps, by searching for the best fit between observations and theory, obtain the values of the parameters of cosmological models. The optimization is carried out assuming that the absolute magnitude of supernovae is not constant, but evolves with time. It is assumed that the dependence of the absolute magnitude on the redshift is linear: M = M( z = 0) + ε<sub>c </sub>z, where ε<sub>c</sub> is the evolution coefficient of the absolute magnitude of type 1a supernovae. In the case of a flat universe ( Ω<sub>M</sub> + Ω<sub>Λ</sub> = 1 ), the best fit between theory and observation is εc </sub>= 0.304. In this case, for the cosmological parameters we obtain Ω<sub>Λ</sub> = 0.000, Ω<sub>M</sub><sub></sub> =1.000. Naturally, this result exactly coincides with the simulation result for the model with zero cosmological constant ( εc</sub> = 0.304, q<sub>0</sub> = 0.500 ). Within the framework of the ΛCDM model, without restriction on space curvature ( Ω<sub>M</sub> + Ω<sub>Λ</sub>+ Ω<sub>K</sub><sub></sub> = 1 ), we obtain the following values: εc</sub> </sub>= 0.304, ΩΛ</sub> = 0.000, ΩM </sub>= 1.000, Ω<sub>K</sub></sub></sub></sub> =0.000. Those, this case also leads to a flat model of the Universe ( Ω<sub>K</sub><sub></sub></sub></sub> =0.000 ). In this work, the critical influence of the absolute magnitude M of type 1a supernovae on the cosmological parameters is also shown. In particular, it was found that a change in this value by only 0.4<sup>m </sup>(from -19.11 to -18.71) leads to a change in the parameters from ΩΛ</sub> = 0.7 and ΩM</sub></sub> = 0.3 to ΩΛ</sub> = 0 and ΩM</sub> =1.
基金supported by the CGCOST Research Project 789/CGCOST/MRP/14
文摘We have investigated late time acceleration for a spatially fiat dust filled Universe in Brans- Dicke theory in the presence of a positive cosmological constant A. Expressions for Hubble's constant, luminosity distance and apparent magnitude have been obtained for our model. The theoretical results are compared with observed values of the latest 287 high redshift (0.3 ≤ z ≤1.4) Type Ia supernova data taken from the Union 2.1 compilation to estimate present values of matter and dark energy parame- ters, (Ωm)0 and (ΩA)0. We have also estimated the present value of Hubble's constant H0 in light of an updated sample of Hubble parameter measurements including 19 independent data points. The results are found to be in good agreement with recent astrophysical observations. We also calculated various physical parameters such as matter and dark energy densities, present age of the Universe and decelera- tion parameter. The value for Brans-Dicke-coupling constant ω is set to be 40 000 based on accuracy of solar system tests and recent experimental evidence.
文摘From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle measured by the Planck Collaboration, we obtain Ωm=0.2724±0.0047, and h+0.020⋅∑mv=0.7038±0.0060, assuming flat space and a cosmological constant. We combine this result with the 2018 Planck “TT, TE, EE + lowE + lensing” analysis, and update a study of ∑mv with new direct measurements of σ8, and obtain ∑mv=0.27±0.08 eV assuming three nearly degenerate neutrino eigenstates. Measurements are consistent with Ωk=0, and Ωde(a)=ΩΛ constant.
文摘Cosmological Models frequently suggest the existence of physical, quantities, e.g. dark energy, we cannot yet observe and measure directly. Their values are obtained indirectly setting them equal to values and accuracy of the associated model parameters which best fit model and observation. Apparently results are so accurate that some researchers speak of precision cosmology. The accuracy attributed to these indirect values of the physical quantities however does not include the uncertainty of the model used to get them. We suggest a Confidence Level Estimator to be attached to these indirect measurements and apply it to current cosmological models.
基金Supported by the National SKA Program of China(2022SKA0110200,2022SKA0110203)the National Natural Science Foundation of China(11975072,11875102,11835009)。
文摘Gravitational waves(GWs)from compact binary coalescences can be used as standard sirens to explore the cosmic expansion history.In the next decades,it is anticipated that we could obtain the multi-band GW standard siren data(from nanohertz to a few hundred hertz),which are expected to play an important role in cosmological parameter estimation.In this work,we provide,for the first time to the best of our knowledge,joint constraints on cosmological parameters using the future multi-band GW standard siren observations.We simulate the multi-band GW standard sirens based on the SKA-era pulsar timing array(PTA),Taiji observatory,and Cosmic Explorer(CE)to perform cosmological analysis.In theΛCDM model,we find that the joint PTA+Taiji+CE data could provide a tight constraint on the Hubble constant with a 0.5%precision.Moreover,PTA+Taiji+CE could break the cosmological parameter degeneracies generated by CMB,especially in the dynamical dark energy models.When combining the PTA+Taiji+CE data with the CMB data,the constraint precisions of?_(m)and H_(0)are 1.0%and 0.3%,respectively,meeting the standard of precision cosmology.The joint CMB+PTA+Taiji+CE data giveσ(_(w))=0.028 in the wCDM model andσ(w_(0))=0.11 andσ(w_(a))=0.32 in the w_(0)w_(a)CDM model,which are comparable with or close to the latest constraint results by CMB+BAO+SN.In conclusion,the future multi-band GW observations are expected to be used for exploring the nature of dark energy and measuring the Hubble constant.
基金supported by the National SKA Program of China No.2020SKA0110402the National Natural Science Foundationof China(NSFC)under grant No.12073088the National Key R&D Program of China(grant No.2020YFC2201600)。
文摘The overabundance of the red and massive candidate galaxies observed by the James Webb Space Telescope(JWST)implies efficient structure formation or large star formation efficiency at high redshift z~10.In the scenario of a low or moderate star formation efficiency,because massive neutrinos tend to suppress the growth of structure of the universe,the JWST observation tightens the upper bound of the neutrino masses.Assuming A cold dark matter cosmology and a star formation efficiency∈[0.05,0.3](flat prior),we perform joint analyses of Planck+JWST and Planck+BAO+JWST,and obtain improved constraints∑m_(ν)<0.196 eV and ∑m_(ν)+<0.111 eV at 95% confidence level,respectively.Based on the above assumptions,the inverted mass ordering,which implies ∑m_(ν)≥0.1 eV,is excluded by Planck+BAO+JWST at 92.7% confidence level.
基金supported by the National Key R&D Program of China(grant No.2020YFC2201600)the National Natural Science Foundation of China(NSFC,grant No.12073088)the National SKA Program of China(grant No.2020SKA0110402)。
文摘We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and is computationally efficient,typically taking a few seconds on a personal laptop for a given set of cosmological parameters.The high efficiency of the code allows a quick estimation of the tension between cosmological models and the red candidate massive galaxies released by the James Webb Space Telescope,as well as scanning the theory space with the Markov Chain Monte Carlo method.As an example application,we use the tool to study the cosmological implication of the candidate galaxies presented in Labbéet al.The standard Λcold dark matter(ΛCDM)model is well consistent with the data if the star formation efficiency can reach~0.3 at high redshift.For a low star formation efficiency ε~0.1,theΛCDM model is disfavored at~2σ-3σconfidence level.
基金supported by the National Key R&D Program of China(2021YFA1600404)the National Natural Science Foundation of China(NSFC,grant No.12173082)+11 种基金science research grants from the China Manned Space Project(CMS-CSST-2021-A12)the Yunnan Province Foundation(202201AT070069)the Top-notch Young Talents Program of Yunnan Provincethe Light of West China Program provided by the Chinese Academy of Sciencesthe International Centre of Supernovae,Yunnan Key Laboratory(202302AN360001)Funding for the LJT has been provided by the CAS and the People’s Government of Yunnan Provincefunded by the“Yunnan University Development Plan for World-Class University”“Yunnan University Development Plan for World-Class Astronomy Discipline”obtained supports from the“Science&Technology Champion Project”(202005AB160002)from two“Team Projects”—the“Innovation Team”(202105AE160021)the“Top Team”(202305AT350002)funded by the“Yunnan Revitalization Talent Support Program.”。
文摘The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia.
基金supported by the National Key R&D Program of China(2023YFA1607800 and 2023YFA1607803)National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and 11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.
文摘The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
基金financial support from the Council of Scientific and Industrial Research(Government of India)with Grant No.03(1420)/18/EMR-II。
文摘This paper reports a detailed study of generalized Chaplygin gas(GCG)with power law form of scale factor and truncated form of the scale factor using binomial expansion in both interacting and non-interacting scenarios along with its cosmological consequences,studied in terms of equation of state(EoS)parameter.In the non-interacting scenario,the EoS parameter behaves as quintessence in both forms of the scale factor.In the interacting scenario,the EoS parameter behaves as phantom and for the truncated form of the scale factor,it violates the constraints of the positive parameterα.The cosmological implementation of GCG interacting with pressureless dark matter is investigated in the framework of f(T)modified gravity,where T is the torsion scalar in teleparallelism.The interaction term is directly proportional to the GCG density with positive coupling constant.In f(T)gravity,the EoS is behaving like phantom.The stability of the reconstructed model is investigated and it is found to be stable against small gravitational perturbations,i.e.,the squared speed of sound is non-negative and an increasing function of cosmic time t.We have observed that our reconstructed f(T)model satisfies one of the sufficient conditions of a realistic reconstructed model and it is consistent with the CMB constraints and primordial nucleosynthesis.Cosmology of primordial perturbations has also been analyzed and the self-interacting potential has been found to be an increasing function of cosmic time t.
文摘In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11235003,11175019 and 11178007)
文摘Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmological models using observa- tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy mod- els at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali- Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi- nally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.
基金supported by the National Key R&D Program of China(2023YFA1607800,2023YFA1607803)the National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.
基金supported by the Natural Science Foundation of China (Grant No. 10873007)supported by the Science Foundation of Jiangxi Education Bureau (GJJ09072)the Program for Innovative Research Teams of Nanchang University
文摘The dependence of chaos on two parameters of the cosmological constant and the self-interacting coefficient in the imaginary phase space for a closed Friedman- Robertson-Walker (FRW) universe with a conformally coupled scalar field, as the full understanding of the dependence in real phase space, is investigated numerically. It is found that Poincar6 plots for the two parameters less than 1 are almost the same as those in the absence of the cosmological constant and self-interacting terms. For energies below the energy threshold of 0.5 for the imaginary problem in which there are no cosmological constant and self-interacting terms, an abrupt transition to chaos occurs when at least one of the two parameters is 1. However, the strength of the chaos does not increase for energies larger than the threshold. For other situations of the two parameters larger than 1, chaos is weaker, and even disappears as the two parameters increase.
基金supported by the National Natural Science Foundation of China(Grant No.11173006)the National Basic Research Program of China(project 973,No.2012CB821804)
文摘We explore the problems of degeneracy and discreteness in the standard cosmological model(ΛCDM). We use the Observational Hubble Data(OHD) and the type Ia supernovae(SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way of model differentiation when using different models to fit the observational data.
文摘Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m(R is a scale factor and m is a constant).A variety of solutions is presented.The physical significance of the cosmological models has also been discussed.