Transgenic insect-resistant cotton is being increasingly planted in Xinjiang cotton-planting regions, where geographical climate conditions and species composition of pests and natural enemies are greatly unique in Ch...Transgenic insect-resistant cotton is being increasingly planted in Xinjiang cotton-planting regions, where geographical climate conditions and species composition of pests and natural enemies are greatly unique in China. Limited studies have been conducted on the ecological impacts of transgenic insect-resistant cotton, especially for transgenic double genes (Bt+CpTI) cotton, in this region. In this study, the potential effects of transgenic Bt+CpTI cotton on the seasonal abundance of non-target pests and predators were assessed from 2009 to 2011 in Korla, Xinjiang. The results showed that species composition and seasonal abundance of 5 groups of pests and 5 groups of predators were not significantly different between transgenic Bt+CpTI cotton and non-transgenic cotton every year. It suggests that transgenic Bt+CpTI cotton per se does not affect the population dynamics of non-target pests and predators on this crop in Xinjiang.展开更多
Xinjiang Uygur Autonomous Region is a scarcely populated area in China and technicians for plant protection are extremely deficient.The occurrence areas of insect pests in grain and cotton crops have been increasing y...Xinjiang Uygur Autonomous Region is a scarcely populated area in China and technicians for plant protection are extremely deficient.The occurrence areas of insect pests in grain and cotton crops have been increasing year by year, causing serious economic losses. Aiming for several main grain and economic crops of Xinjiang(cotton, corn and wheat), an intelligence decision support system for diagnosis and management of grain and cotton crop pests in Xinjiang was designed and developed, which was based on android platform and windows system architecture. APP application program of smart phones was used as an implementation form. The intelligence decision support system will help plant protection personnel and farmers to solve local pest recognition and prevention control problem at the grassroots level in Xinjiang remote regions.展开更多
[Objectives]The paper was to find the diseases and insect pests in the process of cotton growth quickly,effectively and timely.[Methods]The growth process of cotton was dynamically monitored by UAV aerial photography,...[Objectives]The paper was to find the diseases and insect pests in the process of cotton growth quickly,effectively and timely.[Methods]The growth process of cotton was dynamically monitored by UAV aerial photography,and the aerial data map was converted into geotif image with longitude and latitude and then inputted into the detection system for preprocessing,mainly for image feature extraction and classification.Through deep learning of MATLAB software and BP neural network algorithm,the feature similarity of the images in the established characteristic database of cotton diseases and insect pests was compared.[Results]Through comparative analysis of characteristics of a large number of diseases and insect pests,it was found that deep learning method had high discrimination accuracy and good reliability.[Conclusions]The dynamic detection system using deep learning can well find cotton diseases and insect pests,and achieve early detection and early treatment,so as to effectively improve the yield and quality of cotton.展开更多
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络...棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。展开更多
Distinction of predator's diet and prey choice preference is a hot topic of current investigations. Spider being generalist predator and cosmopoliter in nature acts as biological control agent in many agro-ecosystems...Distinction of predator's diet and prey choice preference is a hot topic of current investigations. Spider being generalist predator and cosmopoliter in nature acts as biological control agent in many agro-ecosystems. In the current study, predatory efficacy of five spiders (Pardosa birmanica, Cyclosa insulana, Thomisus projectus, Plexippus paykulli and Lycosa terrestris) inhabiting the cotton fieldevaluated in the laboratory conditions maintained at (27+2)℃ temperature, 65%-5% relative humidity and 12 : 12 h of light and dark photoperiod. Four key cotton pests' viz. Bemisiatabaci, Amrascaderastans Thripstabaci and Helicoverpa armigera were utilized in the choice and no-choice predatory studies. The findings of current investigation revealed that each predatory spider utilized at least one pest species. Predation rate was found higher in the no-choice predation because of unavailability of substitutes feeding source. The investigation also indicated each predatory spider killed more pests than consumed. The findings of this study support the predatory role of spiders in controlling the cotton major pests.展开更多
Cotton growers in the southern USA are facing new production problems that are reducing farm profits and sustainability: 1) herbicide-resistant weeds are spreading throughout the Southeast, 2) thrips are consistently ...Cotton growers in the southern USA are facing new production problems that are reducing farm profits and sustainability: 1) herbicide-resistant weeds are spreading throughout the Southeast, 2) thrips are consistently ranked as an important insect pest group Beltwide, 3) the most effective tool for managing nematodes and thrips (aldicarb) currently is only available in the southeastern USA in limited amounts, and 4) fuel costs have increased significantly over the last ten years. An interseeding system was developed at Clemson University that allows planting of cotton into standing wheat, about 2 - 3 weeks before wheat harvest. This system, which combines benefits of crop residue and minimum tillage operations, has the potential to alleviate many of the production problems cited above, while enhancing farm profits and soil properties. Crop residue associated with the interseeding production system reduced weed populations and required significantly less herbicide inputs compared with the conventional system. Columbia lance nematodes populations were reduced in the interseeding system by 83% without an application of nematicide. Populations of thrips were reduced by 74% in the interseeding production system. No differences were observed between the yields from interseeded and the conventional full-season cotton. However, revenues from the interseeding system were higher due to harvest of the wheat crop. In addition, the interseeding system consumed 35% less fuel than the conventional production systems.展开更多
Field studies were conducted at Hisar during Kharif, 2009-2010 and 2010-2011 under natural and unsprayed condition. RCH 134 Bt, HS 6 (non Bt), H 1117 and Ganganagar Ageti (non Bt) were selected for the studies. The ex...Field studies were conducted at Hisar during Kharif, 2009-2010 and 2010-2011 under natural and unsprayed condition. RCH 134 Bt, HS 6 (non Bt), H 1117 and Ganganagar Ageti (non Bt) were selected for the studies. The experiment was laid down in Randomized Block Design replicated thrice having plant spacing 67.5 × 60 cm. Among the bollworms, Erias spp. exhibited positive correlation with rainfall, minimum temperature and relative humidity morning hours significantly at 5 percent level whereas Helicoverpa and Pectinophora displayed positive relations only with evening hours relative humidity significantly while Spodoptera were significantly positive correlated with relative humidity of morning and evening hours. Bollworm complex was negatively correlated with all the weather parameters employed to study although being non-significant in case of rainfall, maximum and minimum of temperature, morning and evening hours of relative humidity. Among the sucking pests, leafhoppers, whitefly, thrips and aphids population showed significantly negative correlation with weather parameters. The comparison of natural bio-agents in cotton hybrids under study revealed that overall mean population of natural enemies were higher in Bt cotton hybrid as compared to non-Bt. These results confirm that use of genetically modified (Bt) cotton in lieu of conventional genotypes could positively impact non-target and beneficial insect species by preserving their host populations.展开更多
Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection ...Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.展开更多
基金the 973 Program (2001CB109004and 2007CB109202)the Key Projects for Breeding Genetically Modified Organisms of China (2011ZX0811-002 and 2009ZX08011-008B)
文摘Transgenic insect-resistant cotton is being increasingly planted in Xinjiang cotton-planting regions, where geographical climate conditions and species composition of pests and natural enemies are greatly unique in China. Limited studies have been conducted on the ecological impacts of transgenic insect-resistant cotton, especially for transgenic double genes (Bt+CpTI) cotton, in this region. In this study, the potential effects of transgenic Bt+CpTI cotton on the seasonal abundance of non-target pests and predators were assessed from 2009 to 2011 in Korla, Xinjiang. The results showed that species composition and seasonal abundance of 5 groups of pests and 5 groups of predators were not significantly different between transgenic Bt+CpTI cotton and non-transgenic cotton every year. It suggests that transgenic Bt+CpTI cotton per se does not affect the population dynamics of non-target pests and predators on this crop in Xinjiang.
基金Supported by National Natural Science Foundation of China "Characterization and RNAi Silencing of Detoxification Gene Families in Cotton Mite"(31560532)
文摘Xinjiang Uygur Autonomous Region is a scarcely populated area in China and technicians for plant protection are extremely deficient.The occurrence areas of insect pests in grain and cotton crops have been increasing year by year, causing serious economic losses. Aiming for several main grain and economic crops of Xinjiang(cotton, corn and wheat), an intelligence decision support system for diagnosis and management of grain and cotton crop pests in Xinjiang was designed and developed, which was based on android platform and windows system architecture. APP application program of smart phones was used as an implementation form. The intelligence decision support system will help plant protection personnel and farmers to solve local pest recognition and prevention control problem at the grassroots level in Xinjiang remote regions.
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2020D01C003)。
文摘[Objectives]The paper was to find the diseases and insect pests in the process of cotton growth quickly,effectively and timely.[Methods]The growth process of cotton was dynamically monitored by UAV aerial photography,and the aerial data map was converted into geotif image with longitude and latitude and then inputted into the detection system for preprocessing,mainly for image feature extraction and classification.Through deep learning of MATLAB software and BP neural network algorithm,the feature similarity of the images in the established characteristic database of cotton diseases and insect pests was compared.[Results]Through comparative analysis of characteristics of a large number of diseases and insect pests,it was found that deep learning method had high discrimination accuracy and good reliability.[Conclusions]The dynamic detection system using deep learning can well find cotton diseases and insect pests,and achieve early detection and early treatment,so as to effectively improve the yield and quality of cotton.
文摘棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。
文摘Distinction of predator's diet and prey choice preference is a hot topic of current investigations. Spider being generalist predator and cosmopoliter in nature acts as biological control agent in many agro-ecosystems. In the current study, predatory efficacy of five spiders (Pardosa birmanica, Cyclosa insulana, Thomisus projectus, Plexippus paykulli and Lycosa terrestris) inhabiting the cotton fieldevaluated in the laboratory conditions maintained at (27+2)℃ temperature, 65%-5% relative humidity and 12 : 12 h of light and dark photoperiod. Four key cotton pests' viz. Bemisiatabaci, Amrascaderastans Thripstabaci and Helicoverpa armigera were utilized in the choice and no-choice predatory studies. The findings of current investigation revealed that each predatory spider utilized at least one pest species. Predation rate was found higher in the no-choice predation because of unavailability of substitutes feeding source. The investigation also indicated each predatory spider killed more pests than consumed. The findings of this study support the predatory role of spiders in controlling the cotton major pests.
文摘Cotton growers in the southern USA are facing new production problems that are reducing farm profits and sustainability: 1) herbicide-resistant weeds are spreading throughout the Southeast, 2) thrips are consistently ranked as an important insect pest group Beltwide, 3) the most effective tool for managing nematodes and thrips (aldicarb) currently is only available in the southeastern USA in limited amounts, and 4) fuel costs have increased significantly over the last ten years. An interseeding system was developed at Clemson University that allows planting of cotton into standing wheat, about 2 - 3 weeks before wheat harvest. This system, which combines benefits of crop residue and minimum tillage operations, has the potential to alleviate many of the production problems cited above, while enhancing farm profits and soil properties. Crop residue associated with the interseeding production system reduced weed populations and required significantly less herbicide inputs compared with the conventional system. Columbia lance nematodes populations were reduced in the interseeding system by 83% without an application of nematicide. Populations of thrips were reduced by 74% in the interseeding production system. No differences were observed between the yields from interseeded and the conventional full-season cotton. However, revenues from the interseeding system were higher due to harvest of the wheat crop. In addition, the interseeding system consumed 35% less fuel than the conventional production systems.
文摘Field studies were conducted at Hisar during Kharif, 2009-2010 and 2010-2011 under natural and unsprayed condition. RCH 134 Bt, HS 6 (non Bt), H 1117 and Ganganagar Ageti (non Bt) were selected for the studies. The experiment was laid down in Randomized Block Design replicated thrice having plant spacing 67.5 × 60 cm. Among the bollworms, Erias spp. exhibited positive correlation with rainfall, minimum temperature and relative humidity morning hours significantly at 5 percent level whereas Helicoverpa and Pectinophora displayed positive relations only with evening hours relative humidity significantly while Spodoptera were significantly positive correlated with relative humidity of morning and evening hours. Bollworm complex was negatively correlated with all the weather parameters employed to study although being non-significant in case of rainfall, maximum and minimum of temperature, morning and evening hours of relative humidity. Among the sucking pests, leafhoppers, whitefly, thrips and aphids population showed significantly negative correlation with weather parameters. The comparison of natural bio-agents in cotton hybrids under study revealed that overall mean population of natural enemies were higher in Bt cotton hybrid as compared to non-Bt. These results confirm that use of genetically modified (Bt) cotton in lieu of conventional genotypes could positively impact non-target and beneficial insect species by preserving their host populations.
基金supported by Foundation for Research Support of the State of Bahia(FAPESB)the CAPES Foundation(Brazilian Ministry of Education+1 种基金Finance Code 001)for financial supportBahia Association of Cotton Producers。
文摘Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.