Black cotton soil in East Africa is not a stable engineering material for highway and railroad projects. Its strong swelling potential when it absorbs water causes distresses in subgrade of highway and railroad, and t...Black cotton soil in East Africa is not a stable engineering material for highway and railroad projects. Its strong swelling potential when it absorbs water causes distresses in subgrade of highway and railroad, and thus leads to failures of the projects. This paper presents study on the swelling characteristics of black cotton soil in East Africa. Lab tests were conducted to obtain its basic engineering properties, and the results show that black cotton soil contains high amount of montmorillonite and exchangeable cations and is strong expansive soil. Molecular modelling was exploited to further investigate water absorption ability of montmorillonite. Three different molecular models of montmorillonite were constructed and used for simulations, among which Types I and II montmorillonite represent the expansive soil montmorillonite in China, and Types II and III montmorillonite represent black cotton soil montmorillonite in East Africa. The results showed that the interlayer cations of Type III montmorillonite possessed the strongest water absorption ability based on analysis of radial distribution function(RDF) of cations. Interlayer compensatory cations of Na+ enhance the hydration ability of the other major cations, thus resulting in the strong swelling potential of East-Africa black cotton soil.展开更多
The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting o...The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.展开更多
In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relati...In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relationship between state variables and stress variables of BCS,and the coupled consolidation theory for unsaturated soils was employed to simulate the change in the major principal stress of the subgrade soils caused by water loss shrinkage of BCS with the help of Abaqus 6.11 codes.The simulation results indicate that the water losing shrinkage of BCS causes tensile stress within the subgrade,which leads to embankment cracking.The crack depth decreases with the increase in the BCS replacement depth and the embankment height,and increases with the increase in the burial depth of BCS.In the distribution area of deep BCS,the key values of foundation replacement depth for controlling the crack depth of the embankment with the height of 1 to 4 m are 1.2 and 1.5 m.In the low filling section,when the buried depth of BCS is 2,3 and 4 m,the key values of the foundation replacement depth to control the crack depth of the embankment are 0.8 and 1.2 m.In order to control the embankment cracking induced by the water losing shrinkage of BCS,a reasonable replacement depth of the foundation should be selected while slope protection is carried out well.展开更多
To analyze the water swelling characteristics of black cotton soil(BCS),X-ray fluorescence and X-ray diffraction characterizations were performed to investigate the chemical compositions and types of clay minerals in ...To analyze the water swelling characteristics of black cotton soil(BCS),X-ray fluorescence and X-ray diffraction characterizations were performed to investigate the chemical compositions and types of clay minerals in BCS.A montmorillonite crystal lattice was established to simulate the hydration of interlayer cations by applying the SPC/E potential energy model,universal force field,algorithm of charge balance,and periodic boundary.Results indicated that the main clay mineral found in the BCS was montmorillonite(32.6%)with small amounts of interstratified illite-montmorillonite(10.9%),illite(2.3%),and kaolinite(1.5%).The high expansive potential of BCS comes from the strong adsorption property of montmorillonite with a high content of magnesium and sodium ions to water molecules.The exchangeable cations of Na^(+)in BCS were only 3.73%,but they enhanced the adsorption capacity of clay to water molecules and accelerated the hydration of Mg^(2+)(47.1%)and Ca^(2+)(4.78%).The free swell index can be used as a classification index of the swelling potential of BCS.展开更多
[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in...[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in roots, stems and leaves of transgenic cotton Guoshen GK45 at different developmental stages and the annual average content of BtCry1Ac toxin protein in the topsoil, rhizosphere soil and following cotton-growing area were explored and analyzed by using enzyme linked immuno sorbed assay (ELISA). [Result] The content of exogenous BtCry1Ac toxin protein decreased during the growth process of insect-resistant transgenic cotton; to be specific, the content of BtCry1Ac toxin protein in cotton stems and leaves decreased more slowly and always maintained a high level, while that in roots decreased rapidly and reached a minimum level to the following plant growth and development stage. BtCry1Ac toxin protein was detected in topsoil of both non-transgenic and transgenic cotton-growing areas, and the content of BtCry1Ac toxin protein increased in topsoil of following cotton-growing area, which was very low in rhizosphere soil. [Conclusion] Determination of Btcry1Ac toxic protein provides scientific basis for the risk assessment of the cultivation of genetically modified crops and the safety evaluation of soil ecosystem.展开更多
Aiming at the typical engineering problem of black cotton soil(BCS)subgrade under the alternation of dry and wet climate in the region of Nairobi,Kenya,this paper takes the pavement structure as the research object,an...Aiming at the typical engineering problem of black cotton soil(BCS)subgrade under the alternation of dry and wet climate in the region of Nairobi,Kenya,this paper takes the pavement structure as the research object,and the numerical calculation model of BCS subgrade is established based on the consolidation coupling theory of unsaturated soil.Taking the modulus and thickness of the subbase as variables,the deformation characteristics and additional stresses of different pavement structures are analysed.Then the adaptability of different pavement structures to replacement treatment subgrade of BCS is evaluated by gray incidence decision analysis method.The results show that whatever the pavement structure is,neither subgrade modulus nor thickness is sensitive to the pavement surface deformation,and the deformation differences between each pavement structure are more obvious in wet season;the additional stress at control layer bottom and pavement surface decreases with the increase of subbase modulus,whereas the stress may increase at subbase bottom;the additional stress at subbase bottom,control layer bottom and pavement surface all decreases with the increase of subbase thickness for pavement Structure I and II.For pavement Structure III,the change of subbase thickness is not sensitive to the additional stress at the control layer bottom and pavement surface,whereas the stress at subbase bottom increases with the increase of subbase thickness.It is concluded that the most adaptable structure is pavement Structure I,which can minimize the comprehensive level of pavement settlement and additional stress.展开更多
With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere ...With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere microbes and Bt protein residues. In 2013 and 2014, investigations were conducted on the rhizosphere microbial biomass, soil enzyme activities and Bt protein contents of the soil under transgenic Bt cotton (variety GK19) and its parental non-transgenic cotton (Simian 3) cultivated at various salinity levels (1.15, 6.00 and 11.46 dS m-1). Under soil salinity stress, trace amounts of Bt proteins were ob- served in the Bt cotton GK19 rhizosphere soil, although the protein content increased with cotton growth and increased soil salinity levels. The populations of slight halophilic bacteria, phosphate solubilizing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria decreased with increased soil salinity in the Bt and non-Bt cotton rhizosphere soil, and the microbial biomass carbon, microbial respiration and soil catalase, urease and alkaline phosphatase activity also decreased. Correlation analyses showed that the increased Bt protein content in the Bt cotton rhizosphere soil may have been caused by the slower decomposition of soil microorganisms, which suggests that salinity was the main factor influencing the relevant activities of the soil microorganisms and indicates that Bt proteins had no clear adverse effects on the soil microorganisms. The results of this study may provide a theoretical basis for risk assessments of genetically modified cotton in saline alkaline soil.展开更多
[Objective] This study aimed to investigation the effects of tranagenic Bt + CpTI cotton cultivation on functional diversity of microbial communities in rhizospbere soils. E Method] By using the Biolog method, a comp...[Objective] This study aimed to investigation the effects of tranagenic Bt + CpTI cotton cultivation on functional diversity of microbial communities in rhizospbere soils. E Method] By using the Biolog method, a comparative study was conducted on the utilization level of single carbon source by microbes in the rhi- zosphere soils of transgenic Bt + CpTI cotton sGK321 and its parental conventional cotton ' Shiyuan 321' at different growth stages. [ Result ] The results showed that, compared with the parental conventional cotton, the average well-color development (AWCD) value of micmhial communities in rhizospbere soils of transgenie Bt + CpTI cotton were significantly higher (P 〈 O. 05) at seedling stage and budding stage while significantly lower at flower and boll stage and bell opening stage. Shannon-Wiener diversity index (H) and Simpson dominance index (D) of microbial communities in rhlzesphere soils of transgenic cotton and conventional cotton varied with the different growth stages, whereas the Shannon-Wiener evenness index (E) showed no significant difference between transgenie cotton and convention- al cotton at four growth stages. Principal component analysis indicated that the patterns of carbon source utilization by microbial communities in rhizospbere soils were similar among transgenic cotton at seeding stage and flower and boll stage and parental conventional cotton at seeding stage and budding stage, which were also similar between tranagenic cotton at budding stage and parental conventional cotton at flower and boll stage. [ Conclusion] Analysis of different carbon sources indi- cated that the main carbon sources utilized by soil microbes were carbohydrates, amino acids, carboxylie acids and polymers.展开更多
The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil ...The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation.展开更多
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spat...Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.展开更多
The enzymatic activity was evaluated under both Bt and non-Bt systems in varied soil type. The study was conducted during the 2010 wet season (July to December) in a net-house at the Institute of Agricultural Sciences...The enzymatic activity was evaluated under both Bt and non-Bt systems in varied soil type. The study was conducted during the 2010 wet season (July to December) in a net-house at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil ordersi.e.entisol, inceptisol and alfisol. Bt cotton (cvNCS-138) and its non-transgenic isoline (cvNCS-138) were grown until maturity. A no crop pot was maintained with three replications for all the three soil orders. Study design was a factorial experiment under a completely randomized block design with three replications. The study concludes that soil under Bt cotton cultivar produced significantly higher amount of phosphatase activity than both nonBt and no crop treatments at three growth stages. And the value decreased as the crop growth period advanced. The interaction effect between soil type and Bt-crop was found to be significant in different growth stages throughout the growing season. Results from the study revealed that a significant reduction (9.4%) of the dehydrogenase activity and soil respiration (5%) in the rhizosphere of Bt cotton over non-Bt isoline.展开更多
Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three ...Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three crop field management practices on soil CO2 emission and C balance in a cotton field in an arid region of Northwest China. The three management practices were irrigation methods(drip and flood), stubble managements(stubble-incorporated and stubble-removed) and fertilizer amendments(no fertilizer(CK), chicken manure(OM), inorganic N, P and K fertilizer(NPK), and inorganic fertilizer plus chicken manure(NPK+OM)). The results showed that within the C pool range, soil CO2 emission during the whole growing season was higher in the drip irrigation treatment than in the corresponding flood irrigation treatment, while soil organic C concentration was larger in the flood irrigation treatment than in the corresponding drip irrigation treatment. Furthermore, soil CO2 emission and organic C concentration were all higher in the stubble-incorporated treatment than in the corresponding stubble-removed treatment, and larger in the NPK+OM treatment than in the other three fertilizer amendments within the C pool range. The combination of flood irrigation, stubble incorporation and application of either NPK+OM or OM increased soil organic C concentration in the 0-60 cm soil depth. Calculation of net ecosystem productivity(NEP) under different management practices indicated that the combination of drip irrigation, stubble incorporation and NPK+OM increased the size of the C pool most, followed by the combination of drip irrigation, stubble incorporation and NPK. In conclusion, management practices have significant impacts on soil CO2 emission, organic C concentration and C balance in cotton fields. Consequently, appropriate management practices, such as the combination of drip irrigation, stubble incorporation, and either NPK+OM or NPK could increase soil C storage in cotton fields of Northwest China.展开更多
Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induce...Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.展开更多
The objective of this study was to evaluate the effect of potassium (K) fertilization rate (0, 27.9, 56.4, 84.7, 112.9, and 141.1 kg K/ha) and cotton (Gossypium hirsutumn L.) cultivars of slightly differing maturity o...The objective of this study was to evaluate the effect of potassium (K) fertilization rate (0, 27.9, 56.4, 84.7, 112.9, and 141.1 kg K/ha) and cotton (Gossypium hirsutumn L.) cultivars of slightly differing maturity on seedcotton yield and Mehlich-3 soil-test K concentrations. The cotton cultivars “Stoneville 4892” and “Stoneville 5599” represented long-season cultivars while “Paymaster 1218” and “Deltapine 444” represented early-season cultivars. The same K fertilizer treatments were applied to the same plots during the three years of the study. Higher order interactions of cropping year, cotton cultivar and K-fertilization rates were not significant (P ≥ 0.50), indicating the two cultivars of slightly different maturity respond similarly to K-fertilization. Cropping year and K-fertilizer application rates significantly affected seedcotton yield (P P ≤ 0.0074), as well as 3-year average, and total seedcotton yields (P ≤ 0.0006). Seedcotton yields ranged from 3418 to 4127 kg·ha-1 and 2980 to 3487 kg·ha-1 in the second and third year respectively while 3-year average and total seedcotton yields were 2943 to 3443 and 8832 to 10,330 kg·ha-1. The relation between annual, 3-year average, and total K application rates and seedcotton yield was linear (R2 ≥ 0.82, P ≤ 0.0125). Potassium fertilization significantly increased post-harvest (fall) Mehlich-3 extractable soil K in all three years (P ≤ 0.0002). This study indicated that, in a representative Mississippi River Delta silt loam soil, when Mehlich-3 extractable K was -1, K fertilization was needed to increase seedcotton yield and prevent soil K depletion. This supports the current University of Arkansas fertilizer recommendations for irrigated cotton production, where application of 56 kg of K ha-1 is recommended to optimize seedcotton yield and prevent soil K reserve depletion when Mehlich-3 extractable soil test K is medium (91 - 130 mg/kg).展开更多
A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchmen...A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.展开更多
Soil alkali-hydrolyzable nitrogen, which is sensitive to N fertilization rate, is one of the indicators of soil nitrogen supplying capacity. Two field experiments were conducted in Dongtai(120°19″ E, 32°52...Soil alkali-hydrolyzable nitrogen, which is sensitive to N fertilization rate, is one of the indicators of soil nitrogen supplying capacity. Two field experiments were conducted in Dongtai(120°19″ E, 32°52″ N), Jiangsu, China in 2009 and Dafeng(120°28″ E, 33°12″ N), Jiangsu province, China in 2010. Six nitrogen rates(0, 150, 300, 375, 450, and 600 kg ha^(-1)) were used to study the effect of N fertilization rate on soil alkali-hydrolyzable nitrogen content(SAHNC), subtending leaf nitrogen concentration(SLNC), yield, and fiber quality. In both Dongtai and Dafeng experiment station, the highest yield(1709 kg ha^(-1)), best quality(fiber length 30.6 mm, fiber strength 31.6 c N tex^(-1), micronaire 4.82), and highest N agronomic efficiency(2.03 kg kg^(-1)) were achieved at the nitrogen fertilization rate of 375 kg ha^(-1). The dynamics of SAHNC and SLNC could be simulated with a cubic and an exponential function,respectively. The changes in SAHNC were consistent with the changes in SLNC. Optimal average rate(0.276 mg day^(-1)) and duration(51.8 days) of SAHNC rapid decline were similar to the values obtained at the nitrogen rate of 375 kg ha^(-1)at which cotton showed highest fiber yield, quality, and N agronomic efficiency. Thus, the levels and strategies of nitrogen fertilization can affect SAHNC dynamics. The N fertilization rate that optimizes soil alkali-hydrolyzable nitrogen content would optimize the subtending leaf nitrogen concentration and thereby increase the yield and quality of the cotton fiber.展开更多
Soil compaction management in the southeastern USA typically relies heavily on the practice of annual deep tillage. Strip tillage systems have shown considerable promise for reducing energy and labor requirements, equ...Soil compaction management in the southeastern USA typically relies heavily on the practice of annual deep tillage. Strip tillage systems have shown considerable promise for reducing energy and labor requirements, equipment costs, soil erosion, and cotton plant damage from blowing sand. Replicated field trials were conducted for three years in South Carolina, to compare the performance of three different strip tillage systems to conventional tillage and no-till methods. A second objective was to investigate whether the frequency of deep tillage can be reduced by planting cotton directly using controlled wheel traffic into the previous year’s subsoiler furrow. Tillage treatments included: conventional tillage (disk-subsoil-bed), straight shank strip-till, bent-leg shank strip-till (Paratill), bent-leg shank strip till (Terra Max), and no-till. Deep tillage was performed in all plots the first year. In years two and three, the plots were split and half received annual deep tillage and the other half were not deep tilled either year. Tillage methods were compared side by side with and without irrigation. Deep tillage reduced soil compaction and increased taproot length and cotton yields than the no-till system. There was no difference in cotton lint yield between the strip-till systems and conventional tillage in either dry land or irrigated plots. Deep tillage increased cotton lint yields compared to no-till. There was no difference in lint yield between plots which were deep-tilled in all three years with those which had tillage operation only in first year of the test. Dry matter partitioning at first bloom was reduced in plant height, total dry weight, and leaf area in strip-till and no-till production systems compared to the conventional tillage system. The results suggest that all three strip tillage systems are equally effective for cotton production and that annual deep tillage is not necessary if controlled traffic is employed.展开更多
Cotton root growth is often hindered in the Southeastern U.S. due to the presence of root-restricting soil layers. Tillage must be used to temporarily remove this compacted soil layer to allow root growth to depths ne...Cotton root growth is often hindered in the Southeastern U.S. due to the presence of root-restricting soil layers. Tillage must be used to temporarily remove this compacted soil layer to allow root growth to depths needed to sustain plants during periods of drought. However, the use of a uniform depth of tillage may be an inefficient use of energy due to the varying depth of this root-restricting layer. Therefore, the objective of this project was to develop and test equipment for controlling tillage depth “on-the-go” to match the soil physical parameters, and to determine the effects of site-specific tillage on soil physical properties, energy requirements, and plant responses in cotton production. Site-specific tillage operations reduced fuel consumption by 45% compared to conventional constant-depth tillage. Only 20% of the test field required tillage at recommended depth of 38-cm deep for Coastal Plain soils. Cotton taproot length in the variable-depth tillage plots was 96% longer than those in the no-till plots (39 vs. 19.8 cm). Statistically, there was no difference in cotton lint yield between conventional and the variable-depth tillage. Deep tillage (conventional or variable-rate) increased cotton lint yields by 20% compared to no-till.展开更多
Water scarcity is often a major limiting factor in cotton (Gossypium hirsutum L.) production, and sustaining productivity and profitability with limited water is a major challenge for the cotton industry. A good under...Water scarcity is often a major limiting factor in cotton (Gossypium hirsutum L.) production, and sustaining productivity and profitability with limited water is a major challenge for the cotton industry. A good understanding of the magnitude, timing and spatial distribution of cotton soil water extraction is important for proper irrigation management, and for development of accurate crop models and decision support systems. The overall objective of this study was to evaluate the water extraction distribution of cotton under different irrigation regimes. Specific objectives were to quantify: 1) the depth of soil water extraction as a function of time, 2) the percent of seasonal water extraction from each soil depth, and 3) the relationship between depth of soil water extraction and canopy height. To meet these specific objectives, daily and seasonal cotton soil water extraction were determined from continuous records of water content in the soil profile measured from four irrigation treatments during a field experiment. We found that cotton extracted soil water from as deep as 150 cm, but the percent of seasonal extraction sharply decreased with soil depth. The top 50 cm soil layer accounted for 75% of the seasonal extraction and the top 80 cm, for 90%. We also found that from 32 days after sowing (DAS) to 100 DAS, the depth of soil water extraction increased linearly at a rate of 1.89 cm·day-1 or 2.36 times the increase in crop canopy height. These findings suggest that cotton producers should manage irrigations to maintain adequate moisture in the top 80 cm of the soil profile rather than relying on moisture stored deeper in the profile.展开更多
The article presents the data of a long-term experience on the reproductive capacity of the soil during the permanent cultivation of cotton, which has been carried out for 96 years at the Institute of Breeding, Seed P...The article presents the data of a long-term experience on the reproductive capacity of the soil during the permanent cultivation of cotton, which has been carried out for 96 years at the Institute of Breeding, Seed Production and Agrotechnology for Growing Cotton in the Kibray district of the Tashkent region. The article presents the results of analyses by determining the content of humus, from which it can be seen that the decrease in humus was more marked on the control variant without fertilizers, and the amount of humus decreased after 20 years compared to the initial indicator by 11.4 t/ha, after 40 years 16 46 t/ha, after 60 years by 19.05 t/ha, after 80 years by 26.29 t/ha and after 96 years by 29.17 t/ha. It was also determined by the decrease in humus content in option 2, where NPK 250:175:125 kg/ha was applied annually, respectively: 6.487 t/ha;9.225 t/ha;10.09 t/ha;16.95 t/ha;19.65 t/ha;with an annual application of 30 t/ha of manure + 25 kg/ha of P<sub>2</sub>O in option 1, respectively: 0.335 t/ha;3.683 t/ha;11.40 t/ha;22.44 t/ha;32.58 t/ha. In addition, the article also provides data on the yield of cotton by options for permanent cultivation. It was determined that in the control variant, the yield decreased from 16.8 centners per hectare to 9.9 centners per hectare;in the variant where NPK was applied every year 250:175:125 kg/ha was 31 - 34 c/ha, where 30 t/ha of manure + 25 kg/ha P<sub>2</sub>O 29 - 32 c/ha were used every year.展开更多
基金Project(51878164) supported by the National Natural Science Foundation of ChinaProjects(BK20180149, BK20161421) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(KFJ170106) supported by Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, China。
文摘Black cotton soil in East Africa is not a stable engineering material for highway and railroad projects. Its strong swelling potential when it absorbs water causes distresses in subgrade of highway and railroad, and thus leads to failures of the projects. This paper presents study on the swelling characteristics of black cotton soil in East Africa. Lab tests were conducted to obtain its basic engineering properties, and the results show that black cotton soil contains high amount of montmorillonite and exchangeable cations and is strong expansive soil. Molecular modelling was exploited to further investigate water absorption ability of montmorillonite. Three different molecular models of montmorillonite were constructed and used for simulations, among which Types I and II montmorillonite represent the expansive soil montmorillonite in China, and Types II and III montmorillonite represent black cotton soil montmorillonite in East Africa. The results showed that the interlayer cations of Type III montmorillonite possessed the strongest water absorption ability based on analysis of radial distribution function(RDF) of cations. Interlayer compensatory cations of Na+ enhance the hydration ability of the other major cations, thus resulting in the strong swelling potential of East-Africa black cotton soil.
文摘The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.
基金The National Natural Science Foundation of China(No.51778139)the Construction System Science and Technology Project of Jiangsu Province(No.2019ZD058).
文摘In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relationship between state variables and stress variables of BCS,and the coupled consolidation theory for unsaturated soils was employed to simulate the change in the major principal stress of the subgrade soils caused by water loss shrinkage of BCS with the help of Abaqus 6.11 codes.The simulation results indicate that the water losing shrinkage of BCS causes tensile stress within the subgrade,which leads to embankment cracking.The crack depth decreases with the increase in the BCS replacement depth and the embankment height,and increases with the increase in the burial depth of BCS.In the distribution area of deep BCS,the key values of foundation replacement depth for controlling the crack depth of the embankment with the height of 1 to 4 m are 1.2 and 1.5 m.In the low filling section,when the buried depth of BCS is 2,3 and 4 m,the key values of the foundation replacement depth to control the crack depth of the embankment are 0.8 and 1.2 m.In order to control the embankment cracking induced by the water losing shrinkage of BCS,a reasonable replacement depth of the foundation should be selected while slope protection is carried out well.
基金The National Natural Science Foundation of China(No.51778139)Jiangsu Planned Projects for Postdoctoral Research Funds(No.2020Z422).
文摘To analyze the water swelling characteristics of black cotton soil(BCS),X-ray fluorescence and X-ray diffraction characterizations were performed to investigate the chemical compositions and types of clay minerals in BCS.A montmorillonite crystal lattice was established to simulate the hydration of interlayer cations by applying the SPC/E potential energy model,universal force field,algorithm of charge balance,and periodic boundary.Results indicated that the main clay mineral found in the BCS was montmorillonite(32.6%)with small amounts of interstratified illite-montmorillonite(10.9%),illite(2.3%),and kaolinite(1.5%).The high expansive potential of BCS comes from the strong adsorption property of montmorillonite with a high content of magnesium and sodium ions to water molecules.The exchangeable cations of Na^(+)in BCS were only 3.73%,but they enhanced the adsorption capacity of clay to water molecules and accelerated the hydration of Mg^(2+)(47.1%)and Ca^(2+)(4.78%).The free swell index can be used as a classification index of the swelling potential of BCS.
文摘[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in roots, stems and leaves of transgenic cotton Guoshen GK45 at different developmental stages and the annual average content of BtCry1Ac toxin protein in the topsoil, rhizosphere soil and following cotton-growing area were explored and analyzed by using enzyme linked immuno sorbed assay (ELISA). [Result] The content of exogenous BtCry1Ac toxin protein decreased during the growth process of insect-resistant transgenic cotton; to be specific, the content of BtCry1Ac toxin protein in cotton stems and leaves decreased more slowly and always maintained a high level, while that in roots decreased rapidly and reached a minimum level to the following plant growth and development stage. BtCry1Ac toxin protein was detected in topsoil of both non-transgenic and transgenic cotton-growing areas, and the content of BtCry1Ac toxin protein increased in topsoil of following cotton-growing area, which was very low in rhizosphere soil. [Conclusion] Determination of Btcry1Ac toxic protein provides scientific basis for the risk assessment of the cultivation of genetically modified crops and the safety evaluation of soil ecosystem.
基金funded by the National Natural Science Foundation of China,grant number 51878164 and 51922030Southeast University“Zhongying Young Scholars”Project,and Department of Transportation of Shandong Province,grant number 2018B51.
文摘Aiming at the typical engineering problem of black cotton soil(BCS)subgrade under the alternation of dry and wet climate in the region of Nairobi,Kenya,this paper takes the pavement structure as the research object,and the numerical calculation model of BCS subgrade is established based on the consolidation coupling theory of unsaturated soil.Taking the modulus and thickness of the subbase as variables,the deformation characteristics and additional stresses of different pavement structures are analysed.Then the adaptability of different pavement structures to replacement treatment subgrade of BCS is evaluated by gray incidence decision analysis method.The results show that whatever the pavement structure is,neither subgrade modulus nor thickness is sensitive to the pavement surface deformation,and the deformation differences between each pavement structure are more obvious in wet season;the additional stress at control layer bottom and pavement surface decreases with the increase of subbase modulus,whereas the stress may increase at subbase bottom;the additional stress at subbase bottom,control layer bottom and pavement surface all decreases with the increase of subbase thickness for pavement Structure I and II.For pavement Structure III,the change of subbase thickness is not sensitive to the additional stress at the control layer bottom and pavement surface,whereas the stress at subbase bottom increases with the increase of subbase thickness.It is concluded that the most adaptable structure is pavement Structure I,which can minimize the comprehensive level of pavement settlement and additional stress.
基金supported by the National Natural Science Foundation of China (31501253)the Project for the Development of Genetically Modified Crops, Ministry of Agriculture, China (2016ZX08011-002)
文摘With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere microbes and Bt protein residues. In 2013 and 2014, investigations were conducted on the rhizosphere microbial biomass, soil enzyme activities and Bt protein contents of the soil under transgenic Bt cotton (variety GK19) and its parental non-transgenic cotton (Simian 3) cultivated at various salinity levels (1.15, 6.00 and 11.46 dS m-1). Under soil salinity stress, trace amounts of Bt proteins were ob- served in the Bt cotton GK19 rhizosphere soil, although the protein content increased with cotton growth and increased soil salinity levels. The populations of slight halophilic bacteria, phosphate solubilizing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria decreased with increased soil salinity in the Bt and non-Bt cotton rhizosphere soil, and the microbial biomass carbon, microbial respiration and soil catalase, urease and alkaline phosphatase activity also decreased. Correlation analyses showed that the increased Bt protein content in the Bt cotton rhizosphere soil may have been caused by the slower decomposition of soil microorganisms, which suggests that salinity was the main factor influencing the relevant activities of the soil microorganisms and indicates that Bt proteins had no clear adverse effects on the soil microorganisms. The results of this study may provide a theoretical basis for risk assessments of genetically modified cotton in saline alkaline soil.
基金Supported by Major Project for Breeding and Cultivation of Novel GM Varieties(2011ZX08012-005,2011ZX08011-002)Dean Fund of Chinese Academy of Agricultural Sciences(201020)
文摘[Objective] This study aimed to investigation the effects of tranagenic Bt + CpTI cotton cultivation on functional diversity of microbial communities in rhizospbere soils. E Method] By using the Biolog method, a comparative study was conducted on the utilization level of single carbon source by microbes in the rhi- zosphere soils of transgenic Bt + CpTI cotton sGK321 and its parental conventional cotton ' Shiyuan 321' at different growth stages. [ Result ] The results showed that, compared with the parental conventional cotton, the average well-color development (AWCD) value of micmhial communities in rhizospbere soils of transgenie Bt + CpTI cotton were significantly higher (P 〈 O. 05) at seedling stage and budding stage while significantly lower at flower and boll stage and bell opening stage. Shannon-Wiener diversity index (H) and Simpson dominance index (D) of microbial communities in rhlzesphere soils of transgenic cotton and conventional cotton varied with the different growth stages, whereas the Shannon-Wiener evenness index (E) showed no significant difference between transgenie cotton and convention- al cotton at four growth stages. Principal component analysis indicated that the patterns of carbon source utilization by microbial communities in rhizospbere soils were similar among transgenic cotton at seeding stage and flower and boll stage and parental conventional cotton at seeding stage and budding stage, which were also similar between tranagenic cotton at budding stage and parental conventional cotton at flower and boll stage. [ Conclusion] Analysis of different carbon sources indi- cated that the main carbon sources utilized by soil microbes were carbohydrates, amino acids, carboxylie acids and polymers.
基金supported by the National Natural Science Foundation of China (50569004)
文摘The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation.
基金supported by the National 973 project (2009CB421302)the National Project (2007BAC03A0604)the key National Natural Science Foundation (40830640)
文摘Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.
文摘The enzymatic activity was evaluated under both Bt and non-Bt systems in varied soil type. The study was conducted during the 2010 wet season (July to December) in a net-house at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil ordersi.e.entisol, inceptisol and alfisol. Bt cotton (cvNCS-138) and its non-transgenic isoline (cvNCS-138) were grown until maturity. A no crop pot was maintained with three replications for all the three soil orders. Study design was a factorial experiment under a completely randomized block design with three replications. The study concludes that soil under Bt cotton cultivar produced significantly higher amount of phosphatase activity than both nonBt and no crop treatments at three growth stages. And the value decreased as the crop growth period advanced. The interaction effect between soil type and Bt-crop was found to be significant in different growth stages throughout the growing season. Results from the study revealed that a significant reduction (9.4%) of the dehydrogenase activity and soil respiration (5%) in the rhizosphere of Bt cotton over non-Bt isoline.
基金jointly funded by the National Basic Research Program of China (2006CB708401)the Doctor Subject Foundation of the Ministry of Education of China (20116518110002)
文摘Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three crop field management practices on soil CO2 emission and C balance in a cotton field in an arid region of Northwest China. The three management practices were irrigation methods(drip and flood), stubble managements(stubble-incorporated and stubble-removed) and fertilizer amendments(no fertilizer(CK), chicken manure(OM), inorganic N, P and K fertilizer(NPK), and inorganic fertilizer plus chicken manure(NPK+OM)). The results showed that within the C pool range, soil CO2 emission during the whole growing season was higher in the drip irrigation treatment than in the corresponding flood irrigation treatment, while soil organic C concentration was larger in the flood irrigation treatment than in the corresponding drip irrigation treatment. Furthermore, soil CO2 emission and organic C concentration were all higher in the stubble-incorporated treatment than in the corresponding stubble-removed treatment, and larger in the NPK+OM treatment than in the other three fertilizer amendments within the C pool range. The combination of flood irrigation, stubble incorporation and application of either NPK+OM or OM increased soil organic C concentration in the 0-60 cm soil depth. Calculation of net ecosystem productivity(NEP) under different management practices indicated that the combination of drip irrigation, stubble incorporation and NPK+OM increased the size of the C pool most, followed by the combination of drip irrigation, stubble incorporation and NPK. In conclusion, management practices have significant impacts on soil CO2 emission, organic C concentration and C balance in cotton fields. Consequently, appropriate management practices, such as the combination of drip irrigation, stubble incorporation, and either NPK+OM or NPK could increase soil C storage in cotton fields of Northwest China.
文摘Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.
文摘The objective of this study was to evaluate the effect of potassium (K) fertilization rate (0, 27.9, 56.4, 84.7, 112.9, and 141.1 kg K/ha) and cotton (Gossypium hirsutumn L.) cultivars of slightly differing maturity on seedcotton yield and Mehlich-3 soil-test K concentrations. The cotton cultivars “Stoneville 4892” and “Stoneville 5599” represented long-season cultivars while “Paymaster 1218” and “Deltapine 444” represented early-season cultivars. The same K fertilizer treatments were applied to the same plots during the three years of the study. Higher order interactions of cropping year, cotton cultivar and K-fertilization rates were not significant (P ≥ 0.50), indicating the two cultivars of slightly different maturity respond similarly to K-fertilization. Cropping year and K-fertilizer application rates significantly affected seedcotton yield (P P ≤ 0.0074), as well as 3-year average, and total seedcotton yields (P ≤ 0.0006). Seedcotton yields ranged from 3418 to 4127 kg·ha-1 and 2980 to 3487 kg·ha-1 in the second and third year respectively while 3-year average and total seedcotton yields were 2943 to 3443 and 8832 to 10,330 kg·ha-1. The relation between annual, 3-year average, and total K application rates and seedcotton yield was linear (R2 ≥ 0.82, P ≤ 0.0125). Potassium fertilization significantly increased post-harvest (fall) Mehlich-3 extractable soil K in all three years (P ≤ 0.0002). This study indicated that, in a representative Mississippi River Delta silt loam soil, when Mehlich-3 extractable K was -1, K fertilization was needed to increase seedcotton yield and prevent soil K depletion. This supports the current University of Arkansas fertilizer recommendations for irrigated cotton production, where application of 56 kg of K ha-1 is recommended to optimize seedcotton yield and prevent soil K reserve depletion when Mehlich-3 extractable soil test K is medium (91 - 130 mg/kg).
基金supported by the National Basic Research Program of China (2009CB421302)the National Natural Science Foundation of China (41071026,51069017)
文摘A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.
基金funded by the National Key Technology R&D Program of China (No. 2014BAD11B02)the Special Fund for Agro-scientific Research in the Public Interest (No. 201203096)+1 种基金the National Natural Science Foundation of China (Nos. 31401327, 30971735)the China Agriculture Research System (No. CARS-18-20)
文摘Soil alkali-hydrolyzable nitrogen, which is sensitive to N fertilization rate, is one of the indicators of soil nitrogen supplying capacity. Two field experiments were conducted in Dongtai(120°19″ E, 32°52″ N), Jiangsu, China in 2009 and Dafeng(120°28″ E, 33°12″ N), Jiangsu province, China in 2010. Six nitrogen rates(0, 150, 300, 375, 450, and 600 kg ha^(-1)) were used to study the effect of N fertilization rate on soil alkali-hydrolyzable nitrogen content(SAHNC), subtending leaf nitrogen concentration(SLNC), yield, and fiber quality. In both Dongtai and Dafeng experiment station, the highest yield(1709 kg ha^(-1)), best quality(fiber length 30.6 mm, fiber strength 31.6 c N tex^(-1), micronaire 4.82), and highest N agronomic efficiency(2.03 kg kg^(-1)) were achieved at the nitrogen fertilization rate of 375 kg ha^(-1). The dynamics of SAHNC and SLNC could be simulated with a cubic and an exponential function,respectively. The changes in SAHNC were consistent with the changes in SLNC. Optimal average rate(0.276 mg day^(-1)) and duration(51.8 days) of SAHNC rapid decline were similar to the values obtained at the nitrogen rate of 375 kg ha^(-1)at which cotton showed highest fiber yield, quality, and N agronomic efficiency. Thus, the levels and strategies of nitrogen fertilization can affect SAHNC dynamics. The N fertilization rate that optimizes soil alkali-hydrolyzable nitrogen content would optimize the subtending leaf nitrogen concentration and thereby increase the yield and quality of the cotton fiber.
文摘Soil compaction management in the southeastern USA typically relies heavily on the practice of annual deep tillage. Strip tillage systems have shown considerable promise for reducing energy and labor requirements, equipment costs, soil erosion, and cotton plant damage from blowing sand. Replicated field trials were conducted for three years in South Carolina, to compare the performance of three different strip tillage systems to conventional tillage and no-till methods. A second objective was to investigate whether the frequency of deep tillage can be reduced by planting cotton directly using controlled wheel traffic into the previous year’s subsoiler furrow. Tillage treatments included: conventional tillage (disk-subsoil-bed), straight shank strip-till, bent-leg shank strip-till (Paratill), bent-leg shank strip till (Terra Max), and no-till. Deep tillage was performed in all plots the first year. In years two and three, the plots were split and half received annual deep tillage and the other half were not deep tilled either year. Tillage methods were compared side by side with and without irrigation. Deep tillage reduced soil compaction and increased taproot length and cotton yields than the no-till system. There was no difference in cotton lint yield between the strip-till systems and conventional tillage in either dry land or irrigated plots. Deep tillage increased cotton lint yields compared to no-till. There was no difference in lint yield between plots which were deep-tilled in all three years with those which had tillage operation only in first year of the test. Dry matter partitioning at first bloom was reduced in plant height, total dry weight, and leaf area in strip-till and no-till production systems compared to the conventional tillage system. The results suggest that all three strip tillage systems are equally effective for cotton production and that annual deep tillage is not necessary if controlled traffic is employed.
文摘Cotton root growth is often hindered in the Southeastern U.S. due to the presence of root-restricting soil layers. Tillage must be used to temporarily remove this compacted soil layer to allow root growth to depths needed to sustain plants during periods of drought. However, the use of a uniform depth of tillage may be an inefficient use of energy due to the varying depth of this root-restricting layer. Therefore, the objective of this project was to develop and test equipment for controlling tillage depth “on-the-go” to match the soil physical parameters, and to determine the effects of site-specific tillage on soil physical properties, energy requirements, and plant responses in cotton production. Site-specific tillage operations reduced fuel consumption by 45% compared to conventional constant-depth tillage. Only 20% of the test field required tillage at recommended depth of 38-cm deep for Coastal Plain soils. Cotton taproot length in the variable-depth tillage plots was 96% longer than those in the no-till plots (39 vs. 19.8 cm). Statistically, there was no difference in cotton lint yield between conventional and the variable-depth tillage. Deep tillage (conventional or variable-rate) increased cotton lint yields by 20% compared to no-till.
文摘Water scarcity is often a major limiting factor in cotton (Gossypium hirsutum L.) production, and sustaining productivity and profitability with limited water is a major challenge for the cotton industry. A good understanding of the magnitude, timing and spatial distribution of cotton soil water extraction is important for proper irrigation management, and for development of accurate crop models and decision support systems. The overall objective of this study was to evaluate the water extraction distribution of cotton under different irrigation regimes. Specific objectives were to quantify: 1) the depth of soil water extraction as a function of time, 2) the percent of seasonal water extraction from each soil depth, and 3) the relationship between depth of soil water extraction and canopy height. To meet these specific objectives, daily and seasonal cotton soil water extraction were determined from continuous records of water content in the soil profile measured from four irrigation treatments during a field experiment. We found that cotton extracted soil water from as deep as 150 cm, but the percent of seasonal extraction sharply decreased with soil depth. The top 50 cm soil layer accounted for 75% of the seasonal extraction and the top 80 cm, for 90%. We also found that from 32 days after sowing (DAS) to 100 DAS, the depth of soil water extraction increased linearly at a rate of 1.89 cm·day-1 or 2.36 times the increase in crop canopy height. These findings suggest that cotton producers should manage irrigations to maintain adequate moisture in the top 80 cm of the soil profile rather than relying on moisture stored deeper in the profile.
文摘The article presents the data of a long-term experience on the reproductive capacity of the soil during the permanent cultivation of cotton, which has been carried out for 96 years at the Institute of Breeding, Seed Production and Agrotechnology for Growing Cotton in the Kibray district of the Tashkent region. The article presents the results of analyses by determining the content of humus, from which it can be seen that the decrease in humus was more marked on the control variant without fertilizers, and the amount of humus decreased after 20 years compared to the initial indicator by 11.4 t/ha, after 40 years 16 46 t/ha, after 60 years by 19.05 t/ha, after 80 years by 26.29 t/ha and after 96 years by 29.17 t/ha. It was also determined by the decrease in humus content in option 2, where NPK 250:175:125 kg/ha was applied annually, respectively: 6.487 t/ha;9.225 t/ha;10.09 t/ha;16.95 t/ha;19.65 t/ha;with an annual application of 30 t/ha of manure + 25 kg/ha of P<sub>2</sub>O in option 1, respectively: 0.335 t/ha;3.683 t/ha;11.40 t/ha;22.44 t/ha;32.58 t/ha. In addition, the article also provides data on the yield of cotton by options for permanent cultivation. It was determined that in the control variant, the yield decreased from 16.8 centners per hectare to 9.9 centners per hectare;in the variant where NPK was applied every year 250:175:125 kg/ha was 31 - 34 c/ha, where 30 t/ha of manure + 25 kg/ha P<sub>2</sub>O 29 - 32 c/ha were used every year.