Magnesia(MgO) nanoparticles were produced from magnesite ore(MgCO3) using ball mill. The crystalline size, morphology and specific SSA were characterized by X-ray diffraction analysis, transmission electron microscopy...Magnesia(MgO) nanoparticles were produced from magnesite ore(MgCO3) using ball mill. The crystalline size, morphology and specific SSA were characterized by X-ray diffraction analysis, transmission electron microscopy and Brunauer-Emmett-Teller method, respectively. MgO nanoparticle-incorporated nylon6 solutions were electrospun to produce nanofiber mats. Surface morphology and internal structure of the prepared hybrid nanofiber mats were examined by scanning electron microscopy and high-resolution transmission electron microscopy, respectively. The fire retardancy and antibacterial activity(Staphylococcus aureus and Escherichia coli) of coated fabrics made from MgO/nylon 6 hybrid nanofiber are better than those from nylon6 nanofiber.展开更多
基金the financial support provided by the Defence Research Development Organisation (DRDO),New Delhi,for this project (ERIPR/ER/0905103/M/01/1279)
文摘Magnesia(MgO) nanoparticles were produced from magnesite ore(MgCO3) using ball mill. The crystalline size, morphology and specific SSA were characterized by X-ray diffraction analysis, transmission electron microscopy and Brunauer-Emmett-Teller method, respectively. MgO nanoparticle-incorporated nylon6 solutions were electrospun to produce nanofiber mats. Surface morphology and internal structure of the prepared hybrid nanofiber mats were examined by scanning electron microscopy and high-resolution transmission electron microscopy, respectively. The fire retardancy and antibacterial activity(Staphylococcus aureus and Escherichia coli) of coated fabrics made from MgO/nylon 6 hybrid nanofiber are better than those from nylon6 nanofiber.