Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com...Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.展开更多
The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for unders...The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.展开更多
Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influence...Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex.展开更多
According the Coulomb earth pressure theory,it is obtained that,for normally consolidated soils,the lateral pressure coefficient of a soil at rest is equal to 1,and it is independent of the soil type,either granular o...According the Coulomb earth pressure theory,it is obtained that,for normally consolidated soils,the lateral pressure coefficient of a soil at rest is equal to 1,and it is independent of the soil type,either granular or cohesive;or that the material is in a loose or compact state;hard or a soft cohesive soil.Also,a methodology to calculate the earth pressure for intermediate states between at rest condition and the active pressure is presented.In addition,a methodology to calculate the earth pressure for intermediate states between at rest condition and the passive pressure is presented.Two practical examples are presented:one for a frictionless wall;and another for a coarse wall.Practical recommendations are given for the use of the lateral earth pressure coefficient for different applications.展开更多
In electromagnetics, Coulomb’s law is a very classic formula. Almost all textbooks give this formula, but none of them give a detailed corresponding theoretical derivation. In order for beginners of physics to better...In electromagnetics, Coulomb’s law is a very classic formula. Almost all textbooks give this formula, but none of them give a detailed corresponding theoretical derivation. In order for beginners of physics to better understand the physical meaning of this formula, we explored the source, the physical model and mechanism of this formula. Based on the principle that the interaction between two different fields can generate energy density, which is equal to the pressure, we analyzed the distribution of the electric field energy density as well as the corresponding pressure on the charged surface. Through the rigorous mathematical derivation, we give the theoretical derivation of this formula.展开更多
IT is very important to measure physical parameters of minerals, rocks, melts and fluids athigh pressure and high temperature. The data from these experiments can provide materialsfor explanation of geophysical observ...IT is very important to measure physical parameters of minerals, rocks, melts and fluids athigh pressure and high temperature. The data from these experiments can provide materialsfor explanation of geophysical observations on large scale, and information of geochemicalfield. Therefore, we set up measurement methods on elastic wave velocity, electrical conduc-tivity and differential thermal analysis in YJ-3000 ton press fitted with a wedge-type展开更多
For the past half-century, I have been fortunate in maintaining collaborations with Czech scientists in the Czech Republic [formerly Czechoslovakia] from the Geofyzikální ústav-GFU [Institute of Geophys...For the past half-century, I have been fortunate in maintaining collaborations with Czech scientists in the Czech Republic [formerly Czechoslovakia] from the Geofyzikální ústav-GFU [Institute of Geophysics] of the <span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">eskoslovenská Akademie Věd-</span><span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">SAV [Czechoslovak Academy of Sciences]. These collaborations have included exchange visits by me to Prague [Praha] and convening international workshops in 1976, 1986 and 1996 in castles used by the </span><span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">SAV as well as visits by Czech colleagues to Stony Brook University. The objective of this report is to relate this history. This paper is dedicated to the memory of Vladislav Babu</span><span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">ka.</span>展开更多
For more than three decades, I have been fortunate in working with Chinese graduate students and postdoctoral research scientists in our High-Pressure Laboratory at Stony Brook University. These colleagues have conduc...For more than three decades, I have been fortunate in working with Chinese graduate students and postdoctoral research scientists in our High-Pressure Laboratory at Stony Brook University. These colleagues have conducted a wide variety of experiments at high pressures and temperatures in collaboration with our other students and researchers. These studies utilized transmission electron microscopy, ultrasonic interferometry, X-ray powder diffraction and synchrotron X-radiation to investigate phase transitions, thermal equations of state, sound velocities, atomic diffusion, dislocation dissociation and deviatoric stress in high-pressure apparatus. During this period, I have also visited high-pressure laboratories in </span><span style="font-family:Verdana;">the mainland of China</span><span style="font-family:Verdana;"> and Taiwan on several occasions. The objective of this paper is to relate this history.展开更多
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring,University of Malaya,Malaysia
文摘Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.
基金the National Natural Science Foundation of China (41574080 and U1530402).
文摘The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.
基金supported by the National Natural Science Foundation of China (Grant No. 50539110)
文摘Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex.
文摘According the Coulomb earth pressure theory,it is obtained that,for normally consolidated soils,the lateral pressure coefficient of a soil at rest is equal to 1,and it is independent of the soil type,either granular or cohesive;or that the material is in a loose or compact state;hard or a soft cohesive soil.Also,a methodology to calculate the earth pressure for intermediate states between at rest condition and the active pressure is presented.In addition,a methodology to calculate the earth pressure for intermediate states between at rest condition and the passive pressure is presented.Two practical examples are presented:one for a frictionless wall;and another for a coarse wall.Practical recommendations are given for the use of the lateral earth pressure coefficient for different applications.
文摘In electromagnetics, Coulomb’s law is a very classic formula. Almost all textbooks give this formula, but none of them give a detailed corresponding theoretical derivation. In order for beginners of physics to better understand the physical meaning of this formula, we explored the source, the physical model and mechanism of this formula. Based on the principle that the interaction between two different fields can generate energy density, which is equal to the pressure, we analyzed the distribution of the electric field energy density as well as the corresponding pressure on the charged surface. Through the rigorous mathematical derivation, we give the theoretical derivation of this formula.
文摘IT is very important to measure physical parameters of minerals, rocks, melts and fluids athigh pressure and high temperature. The data from these experiments can provide materialsfor explanation of geophysical observations on large scale, and information of geochemicalfield. Therefore, we set up measurement methods on elastic wave velocity, electrical conduc-tivity and differential thermal analysis in YJ-3000 ton press fitted with a wedge-type
文摘For the past half-century, I have been fortunate in maintaining collaborations with Czech scientists in the Czech Republic [formerly Czechoslovakia] from the Geofyzikální ústav-GFU [Institute of Geophysics] of the <span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">eskoslovenská Akademie Věd-</span><span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">SAV [Czechoslovak Academy of Sciences]. These collaborations have included exchange visits by me to Prague [Praha] and convening international workshops in 1976, 1986 and 1996 in castles used by the </span><span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">SAV as well as visits by Czech colleagues to Stony Brook University. The objective of this report is to relate this history. This paper is dedicated to the memory of Vladislav Babu</span><span style="font-family:Verdana;">?</span><span style="font-family:Verdana;">ka.</span>
文摘For more than three decades, I have been fortunate in working with Chinese graduate students and postdoctoral research scientists in our High-Pressure Laboratory at Stony Brook University. These colleagues have conducted a wide variety of experiments at high pressures and temperatures in collaboration with our other students and researchers. These studies utilized transmission electron microscopy, ultrasonic interferometry, X-ray powder diffraction and synchrotron X-radiation to investigate phase transitions, thermal equations of state, sound velocities, atomic diffusion, dislocation dissociation and deviatoric stress in high-pressure apparatus. During this period, I have also visited high-pressure laboratories in </span><span style="font-family:Verdana;">the mainland of China</span><span style="font-family:Verdana;"> and Taiwan on several occasions. The objective of this paper is to relate this history.