Reaction zone characteristics were studied using hydroxy radical planar laser-induced fluorescence (OH-PLIF) technique for a counter-flow preheated (CH4+N2)/(Air+N2) diluted diffusion flames. The effects of pr...Reaction zone characteristics were studied using hydroxy radical planar laser-induced fluorescence (OH-PLIF) technique for a counter-flow preheated (CH4+N2)/(Air+N2) diluted diffusion flames. The effects of preheat temperature and dilute ratio on the reaction zone characteristics were investigated by demonstrating the OH intensity distribution and reaction zone thickness from OH-PLIF images. Under the experimental conditions of constant cold flow velocity, the results show that the OH intensity and reaction zone thickness decrease with the increase of dilute ratio at constant preheat temperature and increase with preheat temperature at fixed dilute ratio. The OH maximum intensity shifts towards the "lean" side of counter flow at constant preheat temperature, and it shifts towards the fuel side with the increase of dilute ratio of fuel stream and towards the oxidizer side with the increase of dilute ratio of oxidizer stream respectively. The feasibility of OH as a reaction zone marker in this diluted combustion is verified further. The variation of diffusion and chemical reaction rate of reactants due to preheat and dilution contributes to the reaction zone characteristics simultaneously. The effect of strain on the flame reaction zone should be included in the future work.展开更多
对电极作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的核心部分之一,其材料的价格、性能和制备方法直接影响DSSCs的发展和应用.DSSCs常用Pt对电极价格昂贵,因此寻找低成本高性能的催化材料代替Pt对电极是降低DSSCs成本的...对电极作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的核心部分之一,其材料的价格、性能和制备方法直接影响DSSCs的发展和应用.DSSCs常用Pt对电极价格昂贵,因此寻找低成本高性能的催化材料代替Pt对电极是降低DSSCs成本的有效途径之一.过渡金属氮化物的电子结构与Pt相似,具有高的催化活性和耐腐蚀性,价格低廉,使其具有广阔的应用前景.文章综述了利用载体与过渡金属氮化物的协同作用或将过渡金属氮化物制备成独特的纳米结构(纳米管和高度有序的阵列等)来解决过渡金属氮化物易团聚和大规模的物质运输受限制等问题.最后提出,开发双组元或多组元过渡金属氮化物和柔性过渡金属氮化物对电极可以作为未来发展方向.展开更多
基金supported by the CNRS "ACI-Energie" Program of France and the National Nature Science Foundation of China (No.50606004)
文摘Reaction zone characteristics were studied using hydroxy radical planar laser-induced fluorescence (OH-PLIF) technique for a counter-flow preheated (CH4+N2)/(Air+N2) diluted diffusion flames. The effects of preheat temperature and dilute ratio on the reaction zone characteristics were investigated by demonstrating the OH intensity distribution and reaction zone thickness from OH-PLIF images. Under the experimental conditions of constant cold flow velocity, the results show that the OH intensity and reaction zone thickness decrease with the increase of dilute ratio at constant preheat temperature and increase with preheat temperature at fixed dilute ratio. The OH maximum intensity shifts towards the "lean" side of counter flow at constant preheat temperature, and it shifts towards the fuel side with the increase of dilute ratio of fuel stream and towards the oxidizer side with the increase of dilute ratio of oxidizer stream respectively. The feasibility of OH as a reaction zone marker in this diluted combustion is verified further. The variation of diffusion and chemical reaction rate of reactants due to preheat and dilution contributes to the reaction zone characteristics simultaneously. The effect of strain on the flame reaction zone should be included in the future work.
文摘对电极作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的核心部分之一,其材料的价格、性能和制备方法直接影响DSSCs的发展和应用.DSSCs常用Pt对电极价格昂贵,因此寻找低成本高性能的催化材料代替Pt对电极是降低DSSCs成本的有效途径之一.过渡金属氮化物的电子结构与Pt相似,具有高的催化活性和耐腐蚀性,价格低廉,使其具有广阔的应用前景.文章综述了利用载体与过渡金属氮化物的协同作用或将过渡金属氮化物制备成独特的纳米结构(纳米管和高度有序的阵列等)来解决过渡金属氮化物易团聚和大规模的物质运输受限制等问题.最后提出,开发双组元或多组元过渡金属氮化物和柔性过渡金属氮化物对电极可以作为未来发展方向.