Plantations of Rupprecht's larch(Larix principis-rupprechtii)have been widely established in the drylands of northwest and north China under traditional fastgrowing plantation management strategies.These strategie...Plantations of Rupprecht's larch(Larix principis-rupprechtii)have been widely established in the drylands of northwest and north China under traditional fastgrowing plantation management strategies.These strategies and the long-term logging ban have led to over-populated stands with lower structural and functional stability,less economic benefit and higher water consumption.To guide the sustainable management of larch plantations,field surveys and historical data compilation were undertaken in the Liupan Mountains of northwest China.The main influencing factors(stand structure and site condition)and their effects on mean tree height,mean DBH and timber volumes were determined based on up-boundary line analysis.Tree growth models coupling the effects of tree age,stand density,and elevation were established.Both height and DBH markedly increased initially and then slowly with tree age,decreased with stand density,and showed unimodal change with elevation.The coupled growth models accounted for72-78%of the variations in tree height,DBH and timber growth.Recommendations for future plantation management are:(1)prolong the rotation to at least 60 years to produce large-diameter,high-quality timber and maintain greater carbon stocks;(2)zone the target functions of stands by elevation;and,(3)reduce stand density for balanced supply of multiple ecosystem services.The growth models developed can predict growth response of larch plantations to density alteration under given ages and elevations,and assist the transformation from traditional management for maximum timber production to site-specific and multifunctional management with longer rotations and moderate tree density.展开更多
A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by ...A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification microstructures.A boundary clearly exists,which separates the coupled growth zone from the decoupled growth zone of eutectic phases for the alloys with Sn content ranging from 14% to 31%(mole fraction).The other Co-Sn alloys out of this content range are hard to be undercooled into the coupled growth zone in the experiment.It is found that the so-called non-reciprocal nucleation phenomenon does not happen in the solidification of undercooled Co-Sn off-eutectic alloys.展开更多
Directional solidification of rod-like eutectic is an important route to produce in situ composites.The rod-like phase spacing of composites is a crucial parameter in determining the properties of the materials.In thi...Directional solidification of rod-like eutectic is an important route to produce in situ composites.The rod-like phase spacing of composites is a crucial parameter in determining the properties of the materials.In this study,the rod-like phase spacing of melt-grown in situ eutectic composites is estimated by the method that is established based on the classical Jackson-Hunt theory and completed by considering the minimum undercooling principle in eutectic solidification at steady state.The density difference between the solid phases is also considered when calculating the diffusion field in the liquid.It is found that the rod-like phase spacing of in situ eutectic composites is generally a not unique value but displays a finite range under fixed growth conditions.Also,the range width,which decreases with increasing growth rate and vice versa,is only dependent on the intrinsic properties of an alloy at a given growth rate.By comparing with the experimental observations,the results show that the predicted spacings are in reasonable agreement with experimental data for nonfaceted-nonfaceted Succinonitrile-(D)camphor,MnSb-Sb,and Al-Al3Ni alloys and faceted-nonfaceted MnBi-Bi system when growing in a coupled manner.展开更多
基金funded by the National Natural Science Foundation of China (U20A2085,U21A2005,41971038)the Central Public-Interest Scientifi c Institution Basal Research Fund of Chinese Academy of Forestry (CAFYBB2021ZW002,CAFYBB2020QB004)。
文摘Plantations of Rupprecht's larch(Larix principis-rupprechtii)have been widely established in the drylands of northwest and north China under traditional fastgrowing plantation management strategies.These strategies and the long-term logging ban have led to over-populated stands with lower structural and functional stability,less economic benefit and higher water consumption.To guide the sustainable management of larch plantations,field surveys and historical data compilation were undertaken in the Liupan Mountains of northwest China.The main influencing factors(stand structure and site condition)and their effects on mean tree height,mean DBH and timber volumes were determined based on up-boundary line analysis.Tree growth models coupling the effects of tree age,stand density,and elevation were established.Both height and DBH markedly increased initially and then slowly with tree age,decreased with stand density,and showed unimodal change with elevation.The coupled growth models accounted for72-78%of the variations in tree height,DBH and timber growth.Recommendations for future plantation management are:(1)prolong the rotation to at least 60 years to produce large-diameter,high-quality timber and maintain greater carbon stocks;(2)zone the target functions of stands by elevation;and,(3)reduce stand density for balanced supply of multiple ecosystem services.The growth models developed can predict growth response of larch plantations to density alteration under given ages and elevations,and assist the transformation from traditional management for maximum timber production to site-specific and multifunctional management with longer rotations and moderate tree density.
基金Project(50874073) supported by the National Natural Science Foundation of ChinaProject(2011CB610405) supported by the National Basic Research Program of ChinaProject(2011M500074) supported by China Postdoctoral Science Foundation
文摘A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification microstructures.A boundary clearly exists,which separates the coupled growth zone from the decoupled growth zone of eutectic phases for the alloys with Sn content ranging from 14% to 31%(mole fraction).The other Co-Sn alloys out of this content range are hard to be undercooled into the coupled growth zone in the experiment.It is found that the so-called non-reciprocal nucleation phenomenon does not happen in the solidification of undercooled Co-Sn off-eutectic alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.50971102,50201012)the Natural Science Foundation of the Shaanxi Education Committee,China(Grant No.14JK1363)
文摘Directional solidification of rod-like eutectic is an important route to produce in situ composites.The rod-like phase spacing of composites is a crucial parameter in determining the properties of the materials.In this study,the rod-like phase spacing of melt-grown in situ eutectic composites is estimated by the method that is established based on the classical Jackson-Hunt theory and completed by considering the minimum undercooling principle in eutectic solidification at steady state.The density difference between the solid phases is also considered when calculating the diffusion field in the liquid.It is found that the rod-like phase spacing of in situ eutectic composites is generally a not unique value but displays a finite range under fixed growth conditions.Also,the range width,which decreases with increasing growth rate and vice versa,is only dependent on the intrinsic properties of an alloy at a given growth rate.By comparing with the experimental observations,the results show that the predicted spacings are in reasonable agreement with experimental data for nonfaceted-nonfaceted Succinonitrile-(D)camphor,MnSb-Sb,and Al-Al3Ni alloys and faceted-nonfaceted MnBi-Bi system when growing in a coupled manner.