In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both c...In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both continuum and discontinuum based numerical methods. Two-dimensional (2D) and three- dimensional (3D) finite element method (FEM) and 2D distinct element method (DEM) with particles were used. The main objective for the large scale in situ experiment is to investigate the yielding strength of crystalline rock and the formation of the excavation disturbed/damaged zone (EDZ) during excavation of two boreholes, pressurizing of one of the boreholes and heating. For the DEM simulations, the heat flow algorithm was newly introduced into the original code. The calculated stress, displacement and temperature distributions were compared with the ones obtained from in situ measurements and FEM simulations. A parametric study for initial microcracks was also performed to reproduce the spalling phenomena observed in the APSE.展开更多
Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror...Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.展开更多
Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety asse...Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety assessment and optimization design of nuclear waste repositories.The international cooperative DECOVALEX-2011 project provides a platform for development,validation and comparison of numerical models,in which the sp pillar stability experiment(APSE) was selected as the modeling target for Task B.This paper presents the modeling results of Wuhan University(WHU) team for stages 1 and 2 of Task B by using a coupled thermo-mechanical model within the framework of continuum mechanics.The rock mass response to excavation is modeled with linear elastic,elastoplastic and brittle-plastic models,while the response to heating is modeled with a coupled thermo-elastic model.The capabilities and limitations of the model for representation of the thermo-mechanical responses of the rock pillar are discussed by comparing the modeling results with experimental observations.The results may provide a helpful reference for the stability and safety assessment of the hard granite host rock in China's Beishan preselected area for high-level radioactive waste disposal.展开更多
This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient th...This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient thermal conduction function was descritized on space and time scales, and was solved by using cellular automaton (CA) method on space scale and finite difference method on time scale, respectively. The advantage of this approach is that no global, but local matrix is used so that it avoids the need to develop and solve large-scale linear equations and the complexity therein. A thermal conductivity versus stress function was proposed to reflect the effect of stress on thermal field. The temperature evolution and induced thermal stress in the pillar part during the heating and cooling processes were well simulated by the developed code. The factors that affect the modeling results were discussed. It is concluded that, the complex TM behavior of Aspo rock pillar is significantly influenced by the complex boundary and initial conditions.展开更多
Underground rock dynamic disasters are becoming more severe due to the increasing depth of human operations underground.Underground temperature and pressure conditions contribute significantly to these disasters.There...Underground rock dynamic disasters are becoming more severe due to the increasing depth of human operations underground.Underground temperature and pressure conditions contribute significantly to these disasters.Therefore,it is important to understand the coupled thermo-mechanical(TM)behaviour of rocks for the long-term safety and maintenance of underground tunnelling and mining.Moreover,investigation of the damage,strength and failure characteristics of rocks under triaxial stress conditions is important to avoid underground rock disasters.In this study,based on Weibull distribution and Lemaitre's strain equivalent principle,a statistical coupled TM constitutive model for sandstone was established under high temperature and pressure conditions.The triaxial test results of sandstone under different temperature and pressure conditions were used to validate the model.The proposed model was in good agreement with the experimental results up to 600℃.The total TM damage was decreased with increasing temperature,while it was increased with increasing confining pressure.The model's parameters can be calculated using conventional laboratory test results.展开更多
A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodo...A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed.展开更多
Based on synthetically considering the coupled thermo mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone shaped workpiece of Al 5.44Mg 2...Based on synthetically considering the coupled thermo mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone shaped workpiece of Al 5.44Mg 2.15Li 0.12Zr alloy at high temperature was conducted by using the rigid visco plastic finite element method. The relations between the total load and the displacement during the forging, and the distributions of stress, strain, temperature and strain rate, which can provide useful information for the process design, are obtained.展开更多
The stability of cement sheath under high temperature and high pressure is one of the most critical issues for the durability of geother-mal well systems.In this study,a two-dimensional plane-strain finite element cod...The stability of cement sheath under high temperature and high pressure is one of the most critical issues for the durability of geother-mal well systems.In this study,a two-dimensional plane-strain finite element code was developed to investigate the coupled thermo-mechanical behaviors of the casing-cement-formation system.Different from previous linear elastic analyses,a thermoelasto-plastic con-stitutive model based on the thermodynamic theory was adopted for the cement sheath.It is shown that the finite element simulations using the proposed model provide a more accurate and realistic prediction of stress–strain responses of the cement sheath under high temperature.The results demonstrate that the radial stress concentration and the tensile strain concentration occur at both the cement–casing interface and the cement–formation interface,where the cement sheath is most likely to fail.High strength and low stiff-ness in the cement sheath and the formation are preferred for the integrity of the system.Both large thermal cycles and large differences between the internal fluid pressure and the external pressure should be avoided during operation.The new code is an alternative tool for guiding the geothermal well design.The finite element framework described herein is universal for other thermo-mechanical applications,such as energy foundations and energy tunnels.展开更多
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation ...Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.展开更多
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically...This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.展开更多
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic...This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials.展开更多
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ...Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.展开更多
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ...This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.展开更多
This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate lead...This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.展开更多
基金conducted within the context of the international DECOVALEX Project (DEvelopment of COupled models and their VALidation against EXperiments)financed by Japan Atomic Energy Agency (JAEA) who was also one of the Funding Organizations of the projectChrister Anders-son from Swedish Nuclear Fuel and Waste Management Co.(SKB),Sweden
文摘In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both continuum and discontinuum based numerical methods. Two-dimensional (2D) and three- dimensional (3D) finite element method (FEM) and 2D distinct element method (DEM) with particles were used. The main objective for the large scale in situ experiment is to investigate the yielding strength of crystalline rock and the formation of the excavation disturbed/damaged zone (EDZ) during excavation of two boreholes, pressurizing of one of the boreholes and heating. For the DEM simulations, the heat flow algorithm was newly introduced into the original code. The calculated stress, displacement and temperature distributions were compared with the ones obtained from in situ measurements and FEM simulations. A parametric study for initial microcracks was also performed to reproduce the spalling phenomena observed in the APSE.
文摘Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.
基金Supported by the National Natural Science Foundation of China(51079107,50839004)the Program for New Century Excellent Talents in University (NCET-09-0610)
文摘Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety assessment and optimization design of nuclear waste repositories.The international cooperative DECOVALEX-2011 project provides a platform for development,validation and comparison of numerical models,in which the sp pillar stability experiment(APSE) was selected as the modeling target for Task B.This paper presents the modeling results of Wuhan University(WHU) team for stages 1 and 2 of Task B by using a coupled thermo-mechanical model within the framework of continuum mechanics.The rock mass response to excavation is modeled with linear elastic,elastoplastic and brittle-plastic models,while the response to heating is modeled with a coupled thermo-elastic model.The capabilities and limitations of the model for representation of the thermo-mechanical responses of the rock pillar are discussed by comparing the modeling results with experimental observations.The results may provide a helpful reference for the stability and safety assessment of the hard granite host rock in China's Beishan preselected area for high-level radioactive waste disposal.
基金the context of the international DECOVALEX Project (DEmonstration of COupled models and their VALidation against EXperiments)grateful to the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (CAS), China, as one of the Funding Organizations of the project+2 种基金supported by a grant from the National Basic Research Program of China (No. 2010CB732006)the National Natural Science Foundation of China (Nos. 10972231, 41272349)SKB through its sp Pillar Stability Experiment project
文摘This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient thermal conduction function was descritized on space and time scales, and was solved by using cellular automaton (CA) method on space scale and finite difference method on time scale, respectively. The advantage of this approach is that no global, but local matrix is used so that it avoids the need to develop and solve large-scale linear equations and the complexity therein. A thermal conductivity versus stress function was proposed to reflect the effect of stress on thermal field. The temperature evolution and induced thermal stress in the pillar part during the heating and cooling processes were well simulated by the developed code. The factors that affect the modeling results were discussed. It is concluded that, the complex TM behavior of Aspo rock pillar is significantly influenced by the complex boundary and initial conditions.
基金the Bowen Basin Underground Geotechnical Society for funding this project。
文摘Underground rock dynamic disasters are becoming more severe due to the increasing depth of human operations underground.Underground temperature and pressure conditions contribute significantly to these disasters.Therefore,it is important to understand the coupled thermo-mechanical(TM)behaviour of rocks for the long-term safety and maintenance of underground tunnelling and mining.Moreover,investigation of the damage,strength and failure characteristics of rocks under triaxial stress conditions is important to avoid underground rock disasters.In this study,based on Weibull distribution and Lemaitre's strain equivalent principle,a statistical coupled TM constitutive model for sandstone was established under high temperature and pressure conditions.The triaxial test results of sandstone under different temperature and pressure conditions were used to validate the model.The proposed model was in good agreement with the experimental results up to 600℃.The total TM damage was decreased with increasing temperature,while it was increased with increasing confining pressure.The model's parameters can be calculated using conventional laboratory test results.
文摘A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed.
文摘Based on synthetically considering the coupled thermo mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone shaped workpiece of Al 5.44Mg 2.15Li 0.12Zr alloy at high temperature was conducted by using the rigid visco plastic finite element method. The relations between the total load and the displacement during the forging, and the distributions of stress, strain, temperature and strain rate, which can provide useful information for the process design, are obtained.
基金the financial support from the 7 th Framework Program for Research of European Commission(Grant No.612665)National Natural Science Foundation of China(NSFC,Grant No.51778338).
文摘The stability of cement sheath under high temperature and high pressure is one of the most critical issues for the durability of geother-mal well systems.In this study,a two-dimensional plane-strain finite element code was developed to investigate the coupled thermo-mechanical behaviors of the casing-cement-formation system.Different from previous linear elastic analyses,a thermoelasto-plastic con-stitutive model based on the thermodynamic theory was adopted for the cement sheath.It is shown that the finite element simulations using the proposed model provide a more accurate and realistic prediction of stress–strain responses of the cement sheath under high temperature.The results demonstrate that the radial stress concentration and the tensile strain concentration occur at both the cement–casing interface and the cement–formation interface,where the cement sheath is most likely to fail.High strength and low stiff-ness in the cement sheath and the formation are preferred for the integrity of the system.Both large thermal cycles and large differences between the internal fluid pressure and the external pressure should be avoided during operation.The new code is an alternative tool for guiding the geothermal well design.The finite element framework described herein is universal for other thermo-mechanical applications,such as energy foundations and energy tunnels.
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12074206)the Natural Science Foundation of Zhejiang Province of China (Grant No.LY22A040005)supported by the National Natural Science Foundation of China (Grant No. 22103043)。
文摘Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
基金Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102)。
文摘This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.
基金supported by the University Natural Science Foundation of Jiangsu Province(Grant No.23KJB130004)the National Natural Science Foundation of China(Grant Nos.11932006,U1934206,12172121,12002118).
文摘This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330)the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114)。
文摘Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2021502004)the Fundamental Research Funds for the Central Universities (Grant No.2024MS126).
文摘This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
基金supported by the National Natural Science Foundation of China(61734007)National Key Research and Development Program of China(2022YFF0706100).
文摘This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.