A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynold...A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.展开更多
Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. ...Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ℃ after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection,展开更多
With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the ...With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.展开更多
The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Fin...The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.展开更多
基金Project (50408019) supported by the National Natural Science Foundation of China
文摘A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
基金supported by the Key Project of National Natural Science Foundation‘‘Deep Heat Governance and Utilization’’(No.51134005)the Doctoral Fund of Ministry of Education(No.20120023120004)
文摘Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ℃ after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection,
基金Financial supports for this project, provided by the key program supported by the National Natural Science Foundation of China(No. 51134005)the Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20120023120004), are gratefully acknowledged
文摘With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.
基金supported by the National Natural Science Foundation of China (Grant Numbers. 41276033)the Jiangsu Science and Technology Support Project (Grant Number. BE2014729)+1 种基金the support from Jiangsu Provincial Government through Jiangsu Chair Professorshipthe 2015 Jiangsu Program of Entrepreneurship and Innovation Group
文摘The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.