期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
THE COUPLED EFFECTS OF MECHANICAL DEFORMATION AND ELECTRONIC PROPERTIES IN CARBON NANOTUBES 被引量:6
1
作者 郭万林 郭宇锋 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期192-198,共7页
Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can ... Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes.The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube.Pure external applied load has little effect on charge distribution,but indeed influences the energy gap.Tensile load leads to a narrower energy gap and compressive load increases the gap.When the CNT is tensioned under an external electric field,the effect of mechanical load on the electronic structures of the CNT becomes significant,and the applied electric field may reduce the critical mechanical tension load remarkably.Size effects are also discussed. 展开更多
关键词 quantum mechanics quantum-molecular dynamics single-walled carbon nanotube coupled effect mechanical-electronic property
下载PDF
A proposal for the theoretical analysis of the interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations 被引量:39
2
作者 FANG Chuanglin ZHOU Chenghu +2 位作者 GU Chaolin CHEN Liding LI Shuangcheng 《Journal of Geographical Sciences》 SCIE CSCD 2017年第12期1431-1449,共19页
Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China.... Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China. However, the development of mega-urban agglomerations has triggered the interactive coercion between resources and the eco-envi- ronment. The interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations represent frontier and high-priority research topics in the field of Earth system science over the next decade. In this paper, we carried out systematic theo- retical analysis of the interactive coupling mechanisms and coercing effects between ur- banization and the eco-environment in mega-urban agglomerations. In detail, we analyzed the nonlinear-coupled relationships and the coupling characteristics between natural and human elements in mega-urban agglomerations. We also investigated the interactive coercion intensities between internal and external elements, and the mechanisms and patterns of local couplings and telecouplings in mega-urban agglomeration systems, which are affected by key internal and external control elements. In addition, we proposed the interactive coupling theory on urbanization and the eco-environment in mega-urban agglomerations. Furthermore we established a spatiotemporal dynamic coupling model with multi-element, multi-scale, multi-scenario, multi-module and multi-agent integrations, which can be used to develop an intelligent decision support system for sustainable development of mega-urban agglomera- tions. In general, our research may provide theoretical guidance and method support to solve problems related to mega-urban agglomerations and maintain their sustainable development. 展开更多
关键词 mega-urban agglomeration URBANIZATION ECO-ENVIRONMENT interactive coupled effects coupling theory process of theoretical analysis
原文传递
Coupled hydro-mechanical effect of a fractured rock mass under high water pressure 被引量:2
3
作者 Zhongming Jiang Shurong Feng Sheng Fu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期88-96,共9页
To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displ... To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model. 展开更多
关键词 fractured rock mass permeability under the condition of high water head hydro-mechanical coupling effect
下载PDF
Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
4
作者 宿梦嘉 邓琼 +3 位作者 刘兰亭 陈连阳 宿梦龙 安敏荣 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期400-411,共12页
Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are inv... Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values(1.31,2.34,and 7.17 nm)and strain rates(1.0×10^(8)s^(-1)≤ε≤5.0×10^(10)s^(-1)).The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate.Four distinct strain rate regions in the tensile process can be discovered,which are small,intermediate,critical,and large strain rate regions.As the strain rate increases,the initial plastic behaviors transform from interface shear(the shortest sample)and grain reorientation(the longest sample)in small strain rate region to amorphization of crystalline structures(all samples)in large strain rate region.Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region,and only related to collapse of crystalline atoms in high strain rate region.A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires.The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs,but barely affect the plastic deformation mechanisms of the materials.The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs. 展开更多
关键词 molecular dynamics Ti/Ni multilayered nanowires coupled layer thickness-strain rate effect plastic deformation mechanisms
下载PDF
Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers
5
作者 Yuan YANG Nenghui ZHANG +2 位作者 Hanlin LIU Jiawei LING Zouqing TAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1547-1562,共16页
DNA-based biosensors have played a huge role in many areas,especially in current global coronavirus outbreak.However,there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients ... DNA-based biosensors have played a huge role in many areas,especially in current global coronavirus outbreak.However,there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients of the nanoscale DNA film,because the existing experimental methods for hard materials are almost invalid.In addition,the relevant theoretical models for DNA films only consider a single effect without clarifying the difference between the two electromechanical effects on device detection signals.This work aims to present multiscale models for DNA-microcantilever experiments to clarify the competitive mechanism in piezoelectric and flexoelectric effects of DNA films on detection signals.First,a Poisson-Boltzmann(PB)equation is used to predict the potential distribution due to the competition between fixed phosphate groups and mobile salt ions in DNA films.Second,a macroscopic piezoelectric/flexoelectric constitutive equation of the DNA film and a mesoscopic free energy model of the DNA solution are combined to analytically predict the electromechanical coefficients of the DNA film and the relevant microcantilever signals by the deformation equivalent method and Zhang’s two-variable method.Finally,the effects of detection conditions on microscopic interactions,electromechanical coupling coefficients,and deflection signals are studied.Numerical results not only agree well with the experimental observations,but also reveal that the piezoelectric and flexoelectric effects of the DNA film should be equivalently modeled when interpreting microcantilever detection signals.These insights might provide opportunities for the microcantilever biosensor with high sensitivity. 展开更多
关键词 DNA microcantilever biosensor electromechanical coupling effect flexo-electricity PIEZOELECTRICITY multiscale model
下载PDF
Impact of cooling rate on mechanical properties and failure mechanism of sandstone under thermal-mechanical coupling effect
6
作者 Pingye Guo Peng Zhang +2 位作者 Mohua Bu Hang Xing Manchao He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期97-116,共20页
High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical propert... High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region. 展开更多
关键词 High geo-temperature Thermo-mechanical coupling effect Cooling rate SANDSTONE PFC
下载PDF
Coupling effects of morphology and inner pore distribution on the mechanical response of calcareous sand particles
7
作者 Xin Li Yaru Lv +3 位作者 Yuchen Su Kunhang Zou Yuan Wang Wenxiong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1565-1579,共15页
Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope... Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution. 展开更多
关键词 Calcareous sand Coupling effects Outer shape Internal pore distribution Particle strength Failure mode
下载PDF
Tailoring topological corner states in photonic crystals by near-and far-field coupling effects
8
作者 张兆健 兰智豪 +2 位作者 陈欢 于洋 杨俊波 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期318-324,共7页
We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the... We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices. 展开更多
关键词 topological corner states photonic crystal slabs optical coupling effects surface lattice resonances
下载PDF
Effect of kinetic ions on the toroidal double-tearing modes
9
作者 张睿博 叶磊 +2 位作者 Yang Chen 项农 杨小庆 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期366-371,共6页
We investigate the effects of kinetic ions on double-tearing modes(DTMs) using the gyrokinetic particle-in-cell simulation code GEM with a gyrokinetic ion/fluid electron hybrid model. It is found that the ion kinetic ... We investigate the effects of kinetic ions on double-tearing modes(DTMs) using the gyrokinetic particle-in-cell simulation code GEM with a gyrokinetic ion/fluid electron hybrid model. It is found that the ion kinetic effects can decrease the growth rate of the DTMs. This effect is more significant for stronger coupling of DTMs with smaller distance between the rational surfaces. Kinetic ions can also enhance the coupling effect between the two rational surfaces. Energy transfer analyses between particles and wave fields show that the stabilizing effect of kinetic ions comes mainly from the perpendicular magnetic drift of ions in the coupling region and around the outer rational surface. 展开更多
关键词 double-tearing modes kinetic ions coupling effect
下载PDF
Calculation and Analysis of TVMS Considering Profile Shifts and Surface Wear Evolution Process of Spur Gear
10
作者 Wenzheng Liu Rupeng Zhu +1 位作者 Wenguang Zhou Jingjing Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期136-150,共15页
Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term o... Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems. 展开更多
关键词 Profile shift Tooth surface wear Structure coupling effect Improved wear depth prediction method TVMS
下载PDF
Dynamic thermo-mechanical responses of road-soft ground system under vehicle load and daily temperature variation
11
作者 Chuxuan Tang Jie Liu +3 位作者 Zheng Lu Yang Zhao Jing Zhang Yinuo Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1722-1731,共10页
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav... A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system. 展开更多
关键词 Dynamic response Vehicle load Daily temperature variation Thermo-poroelastic medium Coupling effects
下载PDF
In-situ coupling construction of interface bridge to enhance electrochemical stability of all solid-state lithium metal batteries
12
作者 Qianwei Zhang Rong Yang +7 位作者 Chao Li Lei Mao Bohai Wang Meng Luo Yinglin Yan Yiming Zou Lisheng Zhong Yunhua Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期18-26,I0003,共10页
Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical pro... Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical properties.However,the organic/inorganic interface is incompatible,resulting in slow lithium-ion transport at the interface.Therefore,the compatibility of organic/inorganic interface is an urgent problem to be solved.Inspired by the concept of“gecko eaves”,polymer-based composite solid electrolytes with dense interface structures were designed.The bridging of organic/inorganic interfaces was established by introducing silane coupling agent(3-chloropropyl)trimethoxysilane(CTMS)into the PEO-3D-LLZAO(PL)electrolyte.The in-situ coupling reaction improves the interface affinity,strengthens the organic/inorganic interaction,reduces the interface resistance,and thus achieves an efficient interface ion transport network.The prepared PEO-3D-LLZAO-CTMS(PLC)electrolyte exhibits enhanced ionic conductivity of 6.04×10^(-4)S cm^(-1)and high ion migration number(0.61)at 60℃and broadens the electrochemical window(5.1 V).At the same time,the PLC electrolyte has good thermal stability and high mechanical properties.Moreover,the Li Fe PO_(4)|PLC|Li battery has excellent rate performance and cycling stability with a capacity decay rate of 2.2%after 100 cycles at 60℃and 0.1 C.These advantages of PLC membranes indicate that this design approach is indeed practical,and the in-situ coupling method provides a new approach to address interface compatibility issues. 展开更多
关键词 Organic/inorganic interphase Coupling effect Composite electrolyte Interface compatibility
下载PDF
Synergistic coupling among Mg_(2)B_(2)O_(5),polycarbonate and N,Ndimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte
13
作者 Yutong Jing Qiang Lv +8 位作者 Yujia Chen Bo Wang Bochen Wu Cheng Li Shengbo Yang Zhipeng He Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期158-168,共11页
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr... Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs. 展开更多
关键词 Composite solid electrolytes Safe Li metal batteries Synergistic coupling effect Poly(vinylidene fluoride-co-hexafluoropro pylene)
下载PDF
Comprehensive kinetic study on ammonia/ethylene counter-flow diffusion flames:influences of diluents
14
作者 Zhimei Shu Tingting Xu +5 位作者 Jiayi Xiao Qige Deng Xuan Zhao Tianjiao Li Yaoyao Ying Dong Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期232-249,共18页
This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on asses... This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side. 展开更多
关键词 Ammonia addition DILUENTS coupled chemical effects Kinetic analysis
下载PDF
Coupled interactive effects of ammonia and hydrogen additions on ethylene diffusion flames: A detailed kinetic study
15
作者 XIAO JiaYi XU TingTing +5 位作者 SHU ZhiMei DENG QiGe ZHAO Xuan YING YaoYao LI TianJiao LIU Dong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期930-948,共19页
In order to create effective combustion technologies and fuels with low or no carbon emissions,the research was conducted to assess the coupled interactive effects of NH_(3) and H_(2) additions on ethylene counterflow... In order to create effective combustion technologies and fuels with low or no carbon emissions,the research was conducted to assess the coupled interactive effects of NH_(3) and H_(2) additions on ethylene counterflow diffusion flames from a kinetic perspective.The effects of the NH_(3)/H_(2) combination on flame temperatures,major species,key radicals,important intermediate species,representative oxygenated species and NO_xwere examined.The results of the study utilizing fictitious inert NH_(3) and/or H_(2) revealed the chemical effects of the two components.It was found that the NH_(3)/H_(2) coupled effects had a more effective inhibitory effect on soot precursors than the effects of corresponding sum of single NH_(3) or H_(2) addition.The production of soot precursors was promoted by the coupled chemical effects of NH_(3) and H_(2),but the coupled dilution and thermal effects were observed to have a greater impact,resulting in a decrease of the mole fractions of soot precursors.As for the interaction of NH_(3) and H_(2) effects,the presence of H_(2) decreased the chemical effects of NH_(3) on the augmentation of C_(2)H_(2),A1,A2,and CH_(3)CHO mole fractions.The NH_(3) addition alleviated the H_(2) chemical effects on increasing C_(2)H_(2),C_(3)H_(3),A1 and A2 concentrations.Conversely,the NH_(3)chemical effects on C_(3)H_(3),OH and CH_(3)CHO were enhanced when H_(2) was added.The presence of NH_(3) augmented the chemical effects of H_(2) on the growth of OH mole fraction.Moreover,the H_(2) chemical effects hindered the production of NO and NO_(2) in the presence of NH_(3). 展开更多
关键词 NH_(3)/H_(2)addition kinetic analysis coupled interactive effects chemical effects
原文传递
Crust-Mantle Structure and Coupling Effects on Mineralization : An Example from Jiaodong Gold Ore Deposits Concentrating Area, China 被引量:17
16
作者 YangLiqiang DengJun +2 位作者 ZhangZhongjie WangGuangjie WangJianping 《Journal of China University of Geosciences》 SCIE CSCD 2003年第1期42-51,共10页
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info... Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system . 展开更多
关键词 geophysical field crust mantle structure coupling effect dynamics of mineralization Jiaodong area of China.
下载PDF
Coupling Effects of Irrigation and Phosphorus Fertilizer Applications on Phosphorus Uptake and Use Efficiency of Winter Wheat 被引量:5
17
作者 WANG Yu CHI Shu-yun +2 位作者 NING Tang-yuan TIAN Shen-zhong LI Zeng-jia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第2期263-272,共10页
The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study wa... The water content and nutrient in soil are two main determine factors to crop yield and quality, managements of which in field are of great importance to maintain sustainable high yield. The objective of this study was to measure the uptake, forms, and use efficiency of phosphorus (P) in wheat under four levels of irrigation (W0, W1, W2, and W3) and three levels of P application (P0, P1, and P2) through two growth seasons of wheat (2008-2010). The field experiment was carried out in a low level of soil P concentration and the eultivar was Jimai 20. The results indicated that P fertilizer combined with irrigation not only improved the activity of phosphatase in soil, but also increased P accumulation in wheat, similar results was found in the grain of wheat, the content of total P increased significantly. Meanwhile, the mainly existence forms of P in grain were the lecithoid-P and labile organic-P. On the other hand, in comparison to the irrigation, the dry matter and grain P production efficiency and postponing P application of wheat increased with increasing Papplication rates within the range of 0-180 kg P2O5 ha-1. The interaction between P and irrigation also significantly (P〈0.01) affected on the P accumulation, grain total P, grain phospholipid P, and P production efficiency. In this study, therefore, the P applications and irrigation improved grain P production efficiency and postponing P application of winter wheat, and W2P2 treatment (180 kg P2O5 ha-1 combination with 120 mm irrigation) had a high P accumulation and P use efficiency, it was an optimum level for P fertilizer application and irrigation in this region. 展开更多
关键词 winter wheat coupling effect IRRIGATION PHOSPHORUS
下载PDF
Combined effects of obstacle and fine water mist on gas explosion characteristics 被引量:5
18
作者 Xiaoping Wen Mengming Wang +2 位作者 Fahui Wang Minggao Yu Haoxin Deng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期131-140,共10页
Combined effects of obstacles and fine water mist on a methane-air explosion of a semi-closed pipe were investigated experimentally.In this study,the diameter of the water mist,the location,and the number of obstacles... Combined effects of obstacles and fine water mist on a methane-air explosion of a semi-closed pipe were investigated experimentally.In this study,the diameter of the water mist,the location,and the number of obstacles was considered.The results demonstrated that 5 μm water mist present a significant suppression affected while 45 μm shows a slight promotion effected on a gas explosion of the condition without obstacles.In the presence of an obstacle,however,the inhibitory effect of 5 μm water veils of mist dropped significantly during flame propagation,and the effect of 45 μm water veils of mist changed from the enhancement of inhibition,and its inhibitory effect was significant.The inhibitory effect of 45 μm water veils of mist on gas explosion weakened firstly and then enhanced with the increasing distance between obstacle location from the ignition location as well as in several obstacles. 展开更多
关键词 Fine water mist Gas explosion suppression OBSTACLE Couple effects
下载PDF
An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect 被引量:3
19
作者 刘凡宇 刘衡竹 +1 位作者 刘必慰 郭宇峰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期344-352,共9页
In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the... In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SO1 FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted. 展开更多
关键词 coupling effect threshold voltage subthreshold region SOI FinFETs junctionless front gate lateral gate back gate
下载PDF
A continuum traffic flow model with the consideration of coupling effect for two-lane freeways 被引量:3
20
作者 D.-H. Sun G.-H. Peng +1 位作者 L.-P. Fu H.-P. He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期228-236,共9页
A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensur... A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows. 展开更多
关键词 Two-lane traffic Two delay time scales model Numerical simulation Coupling effect Phase transition
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部