This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 inn...This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.展开更多
A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents...A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.展开更多
文摘This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.
基金This research was supported by the National Key Research and Development Program of China(Grant No.2018YFC0809605)the National Natural Science Foundation of China(Grant Nos.41230630,41601074)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC015)Science and Technology Plan Project of Tibet(XZ201801-GB-07).
文摘A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.