期刊文献+
共找到2,821篇文章
< 1 2 142 >
每页显示 20 50 100
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:2
1
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Transfer matrix method for determination of the natural vibration characteristics of elastically coupled launch vehicle boosters 被引量:6
2
作者 Laith K.Abbas Qinbo Zhou +1 位作者 Hossam Hendy Xiaoting Rui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期570-580,共11页
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con... The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature. 展开更多
关键词 Transfer matrix method of linear multibodysystems Free vibration characteristics coupled launchvehicle boosters
下载PDF
Study on Dynamic Characteristics of Coupled Model for Deep-Water Lifting System 被引量:2
3
作者 WU Yunxia LU Jianhui ZHANG Chunlei 《Journal of Ocean University of China》 SCIE CAS 2016年第5期809-814,共6页
The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve... The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness. 展开更多
关键词 deep-water installation coupling model dynamic characteristics
下载PDF
Experimental investigation on vibration characteristics of the medium-low-speed maglev vehicle-turnout coupled system 被引量:3
4
作者 Miao Li Dinggang Gao +3 位作者 Tie Li Shihui Luo Weihua Ma Xiaohao Chen 《Railway Engineering Science》 2022年第2期242-261,共20页
The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify t... The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems. 展开更多
关键词 Medium–low-speed maglev Vehicle–turnout coupled system Field test Vibration characteristics Ride quality
下载PDF
Distribution characteristics and influencing factors of the frequency-domain response of a vehicle–track vertical coupled system
5
作者 Jinhui Xu Biao Wang +1 位作者 Li Wang Ping Wang 《Journal of Modern Transportation》 2016年第3期166-176,共11页
Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response ... Employing theory on vehicle-track coupled dynamics, the equation of motion of a vehicle-track vertical coupled system was established by combining frequency analysis and symplectic mathematics. The frequency response of the vehicle-track vertical coupled system was calculated under the excitation of the German low-interfer- ence spectrum, and the effects of the vehicle speed, vehicle suspension parameters, and track support parameters on the frequency response of the coupled system were studied. Results show that, under the excitation of the German low- interference spectrum, the vertical vibration of the car body is mainly concentrated in the low-frequency band, while that of the bogie has a wide frequency distribution, being strong from several Hertz to dozens of Hertz. The vertical vibrations of the wheel-rail force, wheelset, and track structure mainly occur at a frequency of dozens of Hertz. In general, the vertical vibration of the vehicle-track coupled system increases with vehicle speed, and the vertical vibrations of the car body and bogie obviously shift to higher frequency. Increasing the vehicle suspension stiffness increases the low- frequency vibrations of the vehicle system and track struc- ture. With an increase in vehicle suspension damping, the low-frequency vibrations of the car body and bogie and the vibrations of the wheel-rail vertical force and track structure decrease at 50-80 Hz, while the mid-frequency and high- frequency vibrations of the car body and bogie increase. Similarly, an increase in track stiffness amplifies the vertical vibrations of the wheel-rail force and track structure, while an increase in track damping effectively reduces the vertical vibrations of the wheel-rail vertical force and track structure. 展开更多
关键词 Vehicle-track coupled dynamics Frequencyresponse Distribution characteristic Influencing factors
下载PDF
GPU-Based Simulation of Dynamic Characteristics of Ballasted Railway Track with Coupled Discrete-Finite Element Method
6
作者 Xu Li YingYan +1 位作者 Shuai Shao Shunying Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期645-671,共27页
Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irr... Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks. 展开更多
关键词 Ballasted track coupled discrete element-finite element method GPU parallel algorithm dynamic characteristics
下载PDF
Characteristics of permanent magnet linear synchronous motor fed by spwm inverter based on field-circuit coupled method 被引量:1
7
作者 司纪凯 陈昊 +2 位作者 汪旭东 焦留成 袁世鹰 《Journal of Coal Science & Engineering(China)》 2008年第1期147-151,共5页
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the... Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results. 展开更多
关键词 永磁体 同步发电机 逆变器 电路
下载PDF
CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER 被引量:4
8
作者 Yang Ping Zhong Yifang Zhou JiSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, ChinaLiu Yong Guilin Institute of Electronic Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期222-227,共6页
For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dyna... For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber. 展开更多
关键词 Fluid coupling shock absorber Working characteristics MODEL SIMULATION
下载PDF
Numerical Optimization on Aerodynamic/Stealth Characteristics of Airfoil Based on CFD/CEM Coupling Method 被引量:2
9
作者 Jiang Xiangwen Zhao Qijun +1 位作者 Zhao Guoqing Meng Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第3期274-284,共11页
Based on computational fluid dynamics(CFD)/computational electromagnetics method(CEM)coupling method and surrogate model optimization techniques,an integration design method about aerodynamic/stealth characteristics o... Based on computational fluid dynamics(CFD)/computational electromagnetics method(CEM)coupling method and surrogate model optimization techniques,an integration design method about aerodynamic/stealth characteristics of airfoil is established.The O-type body-fitted and orthogonal grid around airfoil is first generated by using the Poisson equations,in which the points per wave and the normal range satisfy the aerodynamic and electromagnetic calculation accuracy requirement.Then the aerodynamic performance of airfoil is calculated by solving the Navier-Stokes(N-S)equations with Baldwin-Lomax(B-L)turbulence model.The stealth characteristics of airfoil are simulated by using finite volume time domain(FVTD)method based on the Maxwell′s equations,Steger-Warming flux splitting and the third-order MUSCL scheme.In addition,based upon the surrogate model optimization technique with full factorial design(FFD)and radial basis function(RBF),an integration design about aerodynamic/stealth characteristics of rotor airfoil is conducted by employing the CFD/CEM coupling method.The aerodynamic/stealth characteristics of NACA series airfoils with different maximum thickness and camber combinations are discussed.Finally,by choosing suitable lift-to-drag ratio and radar cross section(RCS)amplitudes of rotor airfoil in four important scattering regions as the objective function and constraint,the compromised airfoil with high lift-to-drag ratio and low scattering characteristics is designed via systemic and comprehensive analyses. 展开更多
关键词 rotor airfoil aerodynamic characteristics stealth characteristics CFD/CEM coupling surrogate model
下载PDF
Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling 被引量:2
10
作者 Chen Xi Liao Mingfu Li Quankun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期514-523,共10页
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ... A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change. 展开更多
关键词 tightening torque dynamic characteristics spline coupling low pressure rotor aero engine
下载PDF
Non-linear characteristics of Rayleigh-Taylor instable perturbations 被引量:2
11
作者 Zhengfeng Fan Jisheng Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期143-149,共7页
The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the ... The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The ampli- tude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes. 展开更多
关键词 Inertial confinement fusion Rayleigh-Taylorinstability non-linear characteristics Direct numerical simulation
下载PDF
Effect of Intake Conditions and Nozzle Geometry on Spray Characteristics of Group-Hole Nozzle
12
作者 Jianfeng Pan Jinpeng Hua +1 位作者 Jiaqi Yao Abiodun Oluwaleke Ojo 《Energy Engineering》 EI 2023年第7期1541-1562,共22页
The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of i... The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Therefore,in this study,an accurate spray model coupled with the internal cavitating flow was established and computational fluid dynamics(CFD)simulations were done to study the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Experimental data obtained using high-speed digital camera on the high-pressure common rail injection system was used to validate the numerical model.Effects of intake conditions(injection pressure and temperature)and nozzle geometry(orifice entrance curvature radius and nozzle length)on the flow and spray characteristics of the group-hole nozzle were studied numerically.The differences in Sauter mean diameter(SMD),penetration length and fuel evaporation mass between single-hole nozzle and group-hole nozzle under different nozzle geometry were also discussed.It was found that the atomization performance of the group-hole nozzle was better than that of the single-hole nozzle under same intake conditions,and the atomization effect of the short nozzle was better than that of the long nozzle.With increase in the orifice entrance curvature radius,the average velocity and turbulent kinetic energy of the fuel increased,which was conducive to improving the injection rate and flow coefficient of the nozzle.Meanwhile,the penetration length and SMD value rose,while evaporation mass dropped.When the ratio of the orifice entrance curvature radius(R)to the diameter of injection hole(D)was 0.12,the spray characteristics reached a constant state due to elimination of cavitation.Conclusions were made based on these.This study is expected to be a guide for the design of the group-hole nozzle. 展开更多
关键词 DIESEL spray characteristics group-hole nozzle coupling model
下载PDF
Research on Magnetically Coupled Resonant Detection Method for Breakpoint of Four Mesh Grounding Grid
13
作者 Weihua Chen Shuai Wang +1 位作者 Xiaoheng Yan Zhiquan Ye 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期218-228,共11页
Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this pape... Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology. 展开更多
关键词 Grounding grid Magnetically coupled resonant detection Input impedance Phase frequency characteristic curve
下载PDF
CHARACTERISTICS OF STRENGTH CONTROL OF ADAPTIVE STRUCTURE WITH ELECTROMECHANICAL COUPLING
14
作者 Sui Yunkang Shao jianyi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第1期49-61,共13页
Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of ... Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure. 展开更多
关键词 adaptive structure strength control characteristic research electromechanical coupling selection of parameters
下载PDF
Coupling Characteristics and Control of Dual Mechanical Port Machine with Spoke Type Permanent Magnet Arrangement
15
作者 ZHUANG Xingming SONG Qiang +2 位作者 WEN Xuhui ZHAO Feng FAN Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1186-1202,共17页
Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several... Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control methods. Good performance in the control of STPM-DMPM will enhance its practicality, particularly as applied to hybrid systems. 展开更多
关键词 dual mechanical port machine spoke type permanent magnet arrangement coupling characteristics decoupling control optimal control
下载PDF
Water environmental planning considering the influence of non-linear characteristics
16
作者 ZENGGuang-min$ QINXiao-sheng +3 位作者 WANGWei HUANGGuo-he LIJian-bing B.Statzner 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第6期800-807,共8页
In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot... In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot of non-linear behaviors in water environment by emphatically analyzing the influence of the non-linear characteristics of the economic scale, the meandering river and the model on water environmental planning, which will make a certain impact on the water environmental planning that sometimes cannot be neglected. This paper also preliminarily explores how to integrate the non-linear characteristics into water environmental planning. The results showed that compared with traditional methods, water environmental planning considering non-linear characteristics has its prevalence and it is necessary to develop the relevant planning theories and methods. 展开更多
关键词 water environment non-linear characteristics PLANNING
下载PDF
Characteristic fractional step finite difference method for nonlinear section coupled system
17
作者 袁益让 李长峰 +1 位作者 孙同军 刘允欣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1311-1330,共20页
For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of c... For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources. 展开更多
关键词 three-dimensional section coupled system complete nonlinear equation characteristic fractional step CONVERGENCE numerical simulation
下载PDF
Friction coupling vibration characteristics analysis of aviation hydraulic pipelines considering multi factors 被引量:4
18
作者 权凌霄 Guo Meng +2 位作者 Shi Junqiang Jiao Zongxia Guo Changhong 《High Technology Letters》 EI CAS 2018年第2期180-188,共9页
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed... As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft. 展开更多
关键词 管道系统 颤动 水力 磨擦 特征 结构相互作用 液体结构 航空
下载PDF
A Further Study on an Extended Nonlinear Ocean-Atmosphere Coupled Hydrodynamic Characteristic System and the Abrupt Feature of ENSO Events
19
作者 钟青 纪立人 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第2期131-146,共16页
An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmo... An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmosphere coupling assumption in hydrodynamic ENSO models. It is revealed that there is a kind of abrupt nonlinear characteristic behaviour, which relates to rapid onset and intermittency of El Nino events, on the second order slow time scale due to the nonlinear interaction between a linear unstable low-frequency primary eigen component of ocean-atmosphere coupled Kelvin wave and its higher order harmonic components under a strong ocean-atmosphere coupling background. And, on the other hand, there is a kind of finite amplitude nonlinear characteristic behaviour on the second order slow time scale due to the nonlinear interaction between the linear unstable primary eigen component and its higher order harmonic components under a weak ocean-atmosphere coupling background in this model system. 展开更多
关键词 A Further Study on an Extended Nonlinear Ocean-Atmosphere coupled Hydrodynamic characteristic System and the Abrupt Feature of ENSO Events Nino ENSO
下载PDF
Characteristic of Torsional Vibration of Mill Main Drive Excited by Electromechanical Coupling 被引量:8
20
作者 ZHANG Yifang YAN Xiaoqiang LIN Qihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期180-187,共8页
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec... In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system. 展开更多
关键词 rolling mill vibration current harmonic speed oscillation electromechanical coupling vibration characteristic
下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部