期刊文献+
共找到1,996篇文章
< 1 2 100 >
每页显示 20 50 100
Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review 被引量:89
1
作者 Xibing Li Fengqiang Gong +5 位作者 Ming Tao Longjun Dong Kun Du Chunde Ma Zilong Zhou Tubing Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期767-782,共16页
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the... Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced. 展开更多
关键词 Deep rock mechanics coupled static-dynamic loading ROCKBURST Discontinuous rock failure Microseismic source location Continuous mining
下载PDF
Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading 被引量:20
2
作者 Xianjie Hao Weisheng Du +4 位作者 Yixin Zhao Zhuowen Sun Qian Zhang Shaohua Wang Haiqing Qiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期659-668,共10页
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test... The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction. 展开更多
关键词 COAL coupled static-dynamic loading SHPB Dynamic fracture behaviour Crack propagation
下载PDF
Supporting characteristics analysis of constant resistance bolts under coupled static-dynamic loading
3
作者 CHEN Feng TANG Chun-an +2 位作者 SUN Xiao-ming MA Tian-hui DU Yan-hong 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1160-1169,共10页
To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical... To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical test results show that the plastic strain value is 12 times the magnitude of the elastic strain. During plastic deformation, the fluctuation in the stress magnitude is relatively stable, indicating that the bolt has good constant resistance characteristics. The numerical test results are in good agreement with the laboratory test results of M.C. He, and the accuracy and reliability of the numerical test method are verified. Therefore, the RFPA software with coupled static-dynamic loading is further adopted to study the supporting effects of traditional bolts and constant resistance bolts under coupled staticdynamic loading. The numerical comparison of the test results show that the constant resistance bolts can effectively control the deformation amount and rate of the laneway surrounding rock, reduce the total and rate of increase in the accumulated acoustic emissions,decrease the stress on the units in the model and protect the stability of the laneway. This paper verifies that a constant resistance bolt has better impact resistance mechanical properties than those of a traditional bolt and provides an effective way to control rock burst and soft rock that is prone to large deformation damage. 展开更多
关键词 Rock mechanics coupled static-dynamic loading Deep laneway CONSTANT RESISTANCE BOLT RFPA
下载PDF
Mechanical properties of rock under coupled static-dynamic loads 被引量:10
4
作者 Xibing Li Zilong Zhou +4 位作者 Fujun Zhao Yujun Zuo Chunde Ma Zhouyuan Ye Liang Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期41-47,共7页
Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting... Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads. 展开更多
关键词 rock dynamic testing system coupled static-dynamic loads STRENGTH FRAGMENTATION energy absorption
下载PDF
Constitutive model of rock under static-dynamic coupling loading and experimental investigation 被引量:5
5
作者 李夕兵 左宇军 +2 位作者 王卫华 马春德 周子龙 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期714-722,共9页
The importance of study on constitutive model of statically loaded rock experiencing dynamic load is set forth, and the studying methods on dynamic constitutive model are classified according to the current studying s... The importance of study on constitutive model of statically loaded rock experiencing dynamic load is set forth, and the studying methods on dynamic constitutive model are classified according to the current studying status. By way of combining statistic damage model and viscoelastic model, uni-axial and multi-axial constitutive models of statically loaded rock experiencing dynamic load (static-dynamic coupling constitutive model) under intermediate strain rate are established. The verification experiment on 2D constitutive model under different static stress and dynamic stress with different frequencies is designed and performed. It is found that there is a good agreement between the experimental stress-strain curves and the theoretical stress-strain curves. 展开更多
关键词 动荷载 疲劳速率 岩石试验 粘弹性 损伤 本构模型
下载PDF
Mechanical behavior of sandstone during post-peak cyclic loading and unloading under hydromechanical coupling 被引量:3
6
作者 Yanlin Zhao Jinhai Liu +4 位作者 Chunshun Zhang Houquan Zhang Jian Liao Sitao Zhu Lianyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期927-947,共21页
This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands... This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established. 展开更多
关键词 Post-peak stage Cyclic loading and unloading Hydromechanical coupling SANDSTONE Water pressure
下载PDF
Dynamic response and failure behavior of rock under static-dynamic loading 被引量:7
7
作者 陈枫 马春德 徐纪成 《Journal of Central South University of Technology》 2005年第3期354-358,共5页
Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simul... Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simulate the engineering situation that in-situ rock experienced and obtain the dynamic loading with an intermediate strain rate, a low cycle fatigue load with the frequency from 0.5 to 5 Hz was adopted by servo-controlled Instron material testing system. The results show that the obtained strain rate increase with the increase of load frequency. The initial static load has great influence on both the energy and dynamic response of rock. Both the energy and the maximum failure load P_f decreases with the increase of initial static load. P_f under the static-dynamic loading is larger than that under only the static loading but less than that under only the dynamic loading. The load-displacement curves become nonlinear as the pre-added static load reaches the transition point which is about one third of static strength. With the increase of initial static load, Young’s modulus decreases and poisson ratio increases. It shows that rock has a lower strength and a tendency to soften under a higher initial static load. Rock may be broken more easily static-dynamic loading than under only the dynamic loading. The proposed method is useful in the investigation of constitutive relationship and failure behavior of rock under quasi-dynamic loading. 展开更多
关键词 dynamic response ROCK static-dynamic loading strain rate
下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:9
8
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
下载PDF
Torsionally coupled dynamic performance analysis of asymmetric offshore platforms subjected to wave and earthquake loadings
9
作者 He Xiaoyu and Li Hongnan 1.Zhejiang Provincial Planning,Design & Research Institute of Communications,Hangzhou 310006,China 2.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期247-258,共12页
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these mot... The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms. 展开更多
关键词 offshore platform asymmetric structure accidental eccentricity torsion coupling earthquake load wave load
下载PDF
ANALYSIS OF SHAKEDOWN OF FG BREE PLATE SUBJECTED TO COUPLED THERMAL-MECHANICAL LOADINGS
10
作者 Xianghe Peng Ning Hu +1 位作者 Hengwei Zheng Cuirong Fang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期95-108,共14页
The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearl... The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearly elastic and nonlinear isotropic hardening with elastic modulus,yield strength and the thermal expansion coeffcient varying exponentially through the thickness of the plate. The boundaries between the shakedown area and the areas of elasticity,incremental collapse and reversed plasticity are determined,respectively. The shakedown of the counterpart made of homogeneous material with average material properties is also analyzed. The comparison between the results obtained in the two cases exhibits distinct qualitative and quantitative difference,indicating the importance of shakedown analysis for FG structures. Since FG structures are usually used in the cases where severe coupled cyclic thermal and mechanical loadings are applied,the approach developed and the results obtained are significant for the analysis and design of such kind of structures. 展开更多
关键词 functionally graded material the Bree plate coupled thermal-mechanical loading shakedown
下载PDF
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:2
11
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Stress Path Analysis of Deep-Sea Sediments Under the Compression-Shear Coupling Load of Crawler Collectors 被引量:1
12
作者 ZHANG Ning MA Ning +2 位作者 YIN Shiyang CHEN Xuguang SONG Yuheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期65-74,共10页
The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression ... The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression load and a horizontal shear load.Then,the internal stress state of sedimentary soil is examined through a theoretical calculation and finite element numerical simulation.Finally,the driving of crawlers is simulated by changing the relative spatial position between the load and stress unit,obtaining the stress path of the soil unit.Based on the calculation results,the effect of the horizontal shear load on the soil stress response is analyzed at different depths,and the spatial variation law of the soil stress path is examined.The results demonstrate that the horizontal shear load has a significant effect on the rotation of the principal stress,and the reverse rotation of the principal stress axis becomes obvious with the increase in the burial depth.The stress path curve of the soil is different at various depths.The spatial variation rule of the stress path of the shallow soil is complex,whereas the stress path curve of the deep soil tends to shrink as the depth increases.The stress path of the corresponding depth should be selected according to the actual research purpose and applied to the laboratory test. 展开更多
关键词 deep-sea sediment crawler collector compression-shear coupling load stress path principal stress axis direction
下载PDF
A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load 被引量:9
13
作者 Lihai Tan Ting Ren +1 位作者 Xiaohan Yang Xueqiu He 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期791-797,共7页
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ... To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure. 展开更多
关键词 Static–dynamic coupled loads SHPB COAL BEDDING angle Strain energy PFC2D
下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:24
14
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:23
15
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
下载PDF
Nonlinear Random Motion Analysis of Coupled Heave-Pitch Motions of a Spar Platform Considering lst-Order and 2nd-Order Wave Loads 被引量:6
16
作者 Shuxiao Liu YougangTang Wei Li 《Journal of Marine Science and Application》 CSCD 2016年第2期166-174,共9页
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa... In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected. 展开更多
关键词 spar platform coupled heave-pitch random waves 2nd-order wave loads transient wave elevation time domain analysis
下载PDF
Coupling Mechanism of Saturated Concrete Subjected to Simultaneous Fatigue Loading and Freeze-thaw Cycles 被引量:1
17
作者 QIAO Yunfeng SUN Wei +1 位作者 JIANG Jinyang PAN Dongfang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1121-1128,共8页
The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperat... The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperature strain and fatigue strain of concrete specimens were measured at the same time from one sample with stain analysis method and the relationship among these three kinds of strains was studied by fitting data to present coupling mechanism at macro level. The results showed that there was no interaction between fatigue strain and temperature strain and the coupling strain could be written by linear superposition of temperature strain and fatigue strain. 展开更多
关键词 coupling mechanism fatigue loading freeze-thaw cycles strain saturated concrete
下载PDF
Dynamic thermo-mechanical responses of road-soft ground system under vehicle load and daily temperature variation
18
作者 Chuxuan Tang Jie Liu +3 位作者 Zheng Lu Yang Zhao Jing Zhang Yinuo Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1722-1731,共10页
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav... A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system. 展开更多
关键词 Dynamic response Vehicle load Daily temperature variation Thermo-poroelastic medium coupling effects
下载PDF
Natural Frequency of the Bridge—Vehicle Coupled System Considering Uniform Distributed Moving Load
19
作者 Zhang Jun Gou Mingkang Liang Chuan 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期185-189,共5页
Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant sect... Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant section is introduced to establish the frequency equations of the coupled system.Comparisons with the results between analytic model and FEM indicate that the present research is correct and reasonable.In view of an example bridge,natural frequencies are studied on the bridge subjected to uniform distributed moving loads in cases of different weight and span,by which some regular phenomenon are obtained.The present study can apply in the engineering problem of interaction between bridges and moving loads such as trains and tracked vehicles. 展开更多
关键词 bridge-vehicle coupled system frequency analysis UNIFORM DISTRIBUTED MOVING load analytical model
下载PDF
Rectification of RF Fields in Load Dependent Coupled Systems: Application to Non-Invasive Electroceuticals
20
作者 Sree N. Koneru Charles R. Westgate Kenneth J. McLeod 《Journal of Biomedical Science and Engineering》 2016年第2期112-121,共10页
Electroceuticals are medical devices that employ electric signals to alter the activity of specific nerve fibers to achieve therapeutic effects. The rapid growth of RF microelectronics has resulted in the development ... Electroceuticals are medical devices that employ electric signals to alter the activity of specific nerve fibers to achieve therapeutic effects. The rapid growth of RF microelectronics has resulted in the development of very small, portable, and inexpensive shortwave and microwave radio frequency (RF) amplifiers, raising the possibility of utilizing these new RF technologies to develop non-contact electroceutical devices. However, the bio-electromagnetics literature suggests that beyond 10 MHz, RF fields cannot influence biological tissue, beyond simple heating, because effective demodulation mechanisms at these frequencies do not exist in the body. However, RF amplifiers operating at or near saturation have non-linear interactions with complex loads, and if body tissue creates a complex loading condition, the opportunity exists for the coupled system to produce non-linear effects, that is, the equivalent of demodulation may occur. Correspondingly, exposure of tissue to pulsed RF energy could result in the creation of low frequency demodulation components capable of influencing tissue activity. Here, we develop a one-dimen- sional, numerical simulation to investigate the complex loading conditions under which such demodulation could arise. Applying these results in a physical prototype device, we show that up to7.5% demodulation can be obtained for a 40 MHz RF field pulsed at 1 KHz. Implications for this research include the possibility of developing wearable, electromagnetic electroceutical de- vices. 展开更多
关键词 RF Demodulation in Tissue Non-Linear coupling Complex load-Line Electroceuticals NEUROMODULATION Stochastic Resonance
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部