The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcom...The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation. A first-order nonlinear sliding surface is presented, on which the developed sliding mode controller (SMC) is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in SMC, a fixed boundary layer around the switch surface is used. Within the boundary layer, where the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to drive the system states into the boundary layer. Moreover, to compute the equivalent controller, a feed-forward neural network (NN) is used. The weights of the net are updated such that the corrective control term of the NFSMC goes to zero. Then, this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain. Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.展开更多
For the problem of set point regulation of the liquid level in coupled tank systems, we present a continuous sliding mode control(SMC) with a "conditional integrator", which only provides integral action ins...For the problem of set point regulation of the liquid level in coupled tank systems, we present a continuous sliding mode control(SMC) with a "conditional integrator", which only provides integral action inside the boundary layer. For a special choice of the controller parameters, our design can be viewed as a PID controller with anti-windup and achieves robust regulation.The proposed controller recovers the transient response performance without control chattering. Both full-state feedback as well as output-feedback designs are presented in this work. Our output-feedback design uses a high-gain observer(HGO) which recovers the performance of a state-feedback design where plant parameters are assumed to be known. We consider both interacting as well as non-interacting tanks and analytical results for stability and transient performance are presented in both the cases. The proposed controller continuous SMC with conditional integrators(CSMCCI) provides superior results in terms of the performance measures as well as performance indices than ideal SMC, continuous SMC(CSMC) and continuous SMC with conventional integrator(CSMCI). Experimental results demonstrate good tracking performance in spite of unmodeled dynamics and disturbances.展开更多
Using spherical coordinates, the coupling nonlinear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O varia- tional principle, and the viscous damping is int...Using spherical coordinates, the coupling nonlinear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O varia- tional principle, and the viscous damping is introduced via the liquid dissipation function. The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation. Normal differential equations are obtained through the Galerkin method. An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation. The fixed and slosh masses, as well as the spring and damping constants, are determined in such a way as to satisfy the principle of equivalence. Numerical simulations illustrate the theoretical results in this paper as well.展开更多
The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E....The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface.展开更多
Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-d...Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-dimensional frequency domain theory and an impulse response function method based on the potential flow theory, and global ship motion is examined coupling with nonlinear tank sloshing which is simulated by viscous flow theory. Based on the open source Computational Fluid Dynamics (CFD) development platform Open Field Operation and Manipulation (OpenFOAM), numerical calculation of ship motion coupled with tank sloshing is achieved and the corresponding numerical simulation and validation are carried out. With this method, the interactions of wave, ship body and tank sloshing are completely taken into consideration. This method has quite high efficiency for it takes advantage of potential flow theory for outer flow field and viscous flow theory for inside tank sloshing respectively. The numerical and experimental results of the ship motion agree well with each other.展开更多
文摘The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation. A first-order nonlinear sliding surface is presented, on which the developed sliding mode controller (SMC) is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in SMC, a fixed boundary layer around the switch surface is used. Within the boundary layer, where the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to drive the system states into the boundary layer. Moreover, to compute the equivalent controller, a feed-forward neural network (NN) is used. The weights of the net are updated such that the corrective control term of the NFSMC goes to zero. Then, this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain. Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.
文摘For the problem of set point regulation of the liquid level in coupled tank systems, we present a continuous sliding mode control(SMC) with a "conditional integrator", which only provides integral action inside the boundary layer. For a special choice of the controller parameters, our design can be viewed as a PID controller with anti-windup and achieves robust regulation.The proposed controller recovers the transient response performance without control chattering. Both full-state feedback as well as output-feedback designs are presented in this work. Our output-feedback design uses a high-gain observer(HGO) which recovers the performance of a state-feedback design where plant parameters are assumed to be known. We consider both interacting as well as non-interacting tanks and analytical results for stability and transient performance are presented in both the cases. The proposed controller continuous SMC with conditional integrators(CSMCCI) provides superior results in terms of the performance measures as well as performance indices than ideal SMC, continuous SMC(CSMC) and continuous SMC with conventional integrator(CSMCI). Experimental results demonstrate good tracking performance in spite of unmodeled dynamics and disturbances.
基金supported by the National Natural Science Foundation of China(11102006,11172145)the Research Fund for the Doctoral Program of Higher Education(20101102120013)
文摘Using spherical coordinates, the coupling nonlinear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O varia- tional principle, and the viscous damping is introduced via the liquid dissipation function. The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation. Normal differential equations are obtained through the Galerkin method. An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation. The fixed and slosh masses, as well as the spring and damping constants, are determined in such a way as to satisfy the principle of equivalence. Numerical simulations illustrate the theoretical results in this paper as well.
文摘The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface.
文摘Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-dimensional frequency domain theory and an impulse response function method based on the potential flow theory, and global ship motion is examined coupling with nonlinear tank sloshing which is simulated by viscous flow theory. Based on the open source Computational Fluid Dynamics (CFD) development platform Open Field Operation and Manipulation (OpenFOAM), numerical calculation of ship motion coupled with tank sloshing is achieved and the corresponding numerical simulation and validation are carried out. With this method, the interactions of wave, ship body and tank sloshing are completely taken into consideration. This method has quite high efficiency for it takes advantage of potential flow theory for outer flow field and viscous flow theory for inside tank sloshing respectively. The numerical and experimental results of the ship motion agree well with each other.