期刊文献+
共找到10,712篇文章
< 1 2 250 >
每页显示 20 50 100
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
1
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
2
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
3
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model
4
作者 Junya HU Hongna WANG +1 位作者 Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期864-880,共17页
A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni... A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM. 展开更多
关键词 hybrid coupled model tropical Pacific Ocean global atmosphere Eastern/Central-Pacific El Niño atmospheric teleconnections
下载PDF
Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China's Coastal Zone Based on Coupled SD-FLUS Model
5
作者 HOU Xiyong SONG Baiyuan +2 位作者 ZHANG Xueying WANG Xiaoli LI Dong 《Chinese Geographical Science》 SCIE CSCD 2024年第4期579-598,共20页
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang... Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions. 展开更多
关键词 land use and land cover change(LUCC) multi-scenario simulation system dynamic-future land use simulation(SD-FLUS)model SSP-RCP scenarios model coupling China's coastal zone
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
6
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
Numerical Modelling of Coupled Heat and Mass Transfer in Porous Materials: Application to Cinder Block Bricks
7
作者 Benjamin Kiema Ousmane Coulibaly +1 位作者 Xavier Chesneau Belkacem Zeghmati 《Open Journal of Applied Sciences》 2024年第9期2360-2373,共14页
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p... In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat. 展开更多
关键词 Numerical modelling coupled Transfer Building Materials Luikov model Finite Differences
下载PDF
Mathematical Modeling of Multiple Capacitor Coupled Substations (CCS) Impact on Transmission Lines and Approaches for Ferroresonance Suppression
8
作者 Sinqobile Wiseman Nene 《Open Journal of Modelling and Simulation》 2024年第4期101-113,共13页
Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CC... Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CCS) offer a promising solution for delivering cost-effective electricity to these underserved areas. However, the integration of multiple CCS units along a transmission network introduces complex interactions that can significantly impact voltage, current, and power flow. This study presents a detailed mathematical model to analyze the effects of varying distances and configurations of multiple CCS units on a transmission network, with a focus on voltage stability, power quality, and reactive power fluctuations. Furthermore, the research addresses the phenomenon of ferroresonance, a critical issue in networks with multiple CCS units, by developing and validating suppression strategies to ensure stable operation. Through simulation and practical testing, the study provides insights into optimizing CCS deployment, ultimately contributing to more reliable and efficient rural electrification solutions. 展开更多
关键词 Capacitor coupled Substation FERRORESONANCE Power System modelling Algorithm Presentation Rural Electrification
下载PDF
Thermal-hydro-mechanical coupling damage model of brittle rock 被引量:1
9
作者 李鹏 饶秋华 +2 位作者 李卓 马雯波 马彬 《Journal of Central South University》 SCIE EI CAS 2014年第3期1136-1141,共6页
Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage varia... Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model. 展开更多
关键词 damage model THM coupling mechanism permeability test THM coupling test brittle rock
下载PDF
Thermal-hydro-mechanical coupled analysis of unsaturated frostsusceptible soils
10
作者 YuWei Wu Tatsuya Ishikawa 《Research in Cold and Arid Regions》 CSCD 2022年第4期223-234,共12页
Damage caused by frost heave leads to costly maintenance in cold regions, like Hokkaido, Japan. Therefore, thestudy of the frost mechanism with experimental and numerical methods has been of great interest. Numerousmo... Damage caused by frost heave leads to costly maintenance in cold regions, like Hokkaido, Japan. Therefore, thestudy of the frost mechanism with experimental and numerical methods has been of great interest. Numerousmodels have been developed to describe the freezing process of saturated soil, which differs from the partiallysaturated conditions in the field. In fact, most subsurface soils are unsaturated. The freezing process of partiallysaturated soils is more complex than saturated soils, as the governing equations show strongly nonlinear characteristics. This study proposes a thermo-hydro-mechanical coupled model considering the heat transfer, waterinfiltration, and deformation of partially saturated soil to reproduce the freezing process of partially saturatedfrost susceptible soils distributed in Hokkaido. This model better considers the water-ice phase change and soilfreezing characteristic curve (SFCC) during freezing under field conditions. The results from the multiphysicssimulations agree well with the frost heave and water migration data from frost heave tests of Touryo soil andFujinomori soil. In addition, this study discussed the influence of the various factors on frost heave amount,including temperature gradients, overburden pressures, water supply conditions, cooling rates, and initial saturation. The simulation results indicate that the frost heave ratio is proportional to the initial degree of saturationand is inversely proportional to the cooling rate and overburden pressure.Moreover, simulation under the open system generates much more frost heave than under the closed system.Finally, the main features of the proposed model are revealed by simulating a closed-system frost heave test. Thesimulation results indicate that the proposed model adequately captures the coupling characteristics of water andice redistribution, temperature development, hydraulic conductivity, and suction in the freezing process. Togetherwith the decreased hydraulic conductivity, the increased suction controls the water flow in the freezing zone. Theinflow water driven by cryogenic suction gradient feeds the ice formation, leads to a rapid increase in total watercontent, expanding the voids that exceed the initial porosity and contributing to the frost heave. 展开更多
关键词 Frost heave Unsaturated soil thermal-hydro-mechanical(THM)coupled model Finite element method(FEM)
下载PDF
Thermal-hydro-mechanical coupling stress intensity factor of brittle rock 被引量:3
11
作者 李鹏 饶秋华 +1 位作者 李卓 敬静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期499-508,共10页
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi... A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula. 展开更多
关键词 stress intensity factor thermal-hydro-mechanical coupling boundary collocation method fracture mechanism brittle rock
下载PDF
Thermo-mechanical coupled particle model for rock 被引量:7
12
作者 夏明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2367-2379,共13页
A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analy... A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analytical solutions are available,demonstrate the correctness and usefulness of the thermo-mechanical coupled particle model.This model is applied to simulating an application example with two cases:one is temperature-independent elastic modulus and strength,while the other is temperature-dependent elastic modulus and strength.The related simulation results demonstrate that microscopic crack initiation and propagation process with consideration of temperature-independent and temperature-dependent elastic modulus and strength are different and therefore,the corresponding macroscopic failure patterns of rock are also different.On the contrary,considering the temperature-dependent elastic modulus and strength has no or little effect on the heating conduction behavior.Numerical results,which are obtained by using the proposed model with temperature-dependent elastic modulus and strength,agree well with the experimental results.This also reveals that the rock subjected to heating experiences much more cracking than the rock subjected to cooling. 展开更多
关键词 particle simulation method MICROMECHANICS rock fracture thermo-mechanical coupled model
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
13
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Evaluation of East Asian Climatology as Simulated by Seven Coupled Models 被引量:54
14
作者 姜大膀 王会军 郎咸梅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第4期479-495,共17页
Using observation and reanalysis data throughout 1961-1990, the East Asian surface air temperature, precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely ... Using observation and reanalysis data throughout 1961-1990, the East Asian surface air temperature, precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely CCSR/NIES, CGCM2, CSIRO-Mk2, ECHAM4/OPYC3, GFDL-R30, HadCM3, and NCAR-PCM, are systematically evaluated in this study. It is indicated that the above models can successfully reproduce the annual and seasonal surface air temperature and precipitation climatology in East Asia, with relatively good performance for boreal autumn and annual mean. The models' ability to simulate surface air temperature is more reliable than precipitation. In addition, the models can dependably capture the geographical distribution pattern of annual, boreal winter, spring and autumn sea level pressure in East Asia. In contrast, relatively large simulation errors are displayed when simulated boreal summer sea level pressure is compared with reanalysis data in East Asia. It is revealed that the simulation errors for surface air temperature, precipitation and sea level pressure are generally large over and around the Tibetan Plateau. No individual model is best in every aspect. As a whole, the ECHAM4/OPYC3 and HadCM3 performances are much better, whereas the CGCM2 is relatively poorer in East Asia. Additionally, the seven-model ensemble mean usually shows a relatively high reliability. 展开更多
关键词 coupled model East Asian climatology EVALUATION
下载PDF
Progress in the Development and Application of Climate Ocean Models and Ocean-Atmosphere Coupled Models in China 被引量:23
15
作者 周天军 俞永强 +3 位作者 刘海龙 李薇 游小宝 周广庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期1109-1120,共12页
A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed... A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed. 展开更多
关键词 climate ocean model ocean-atmosphere coupled model climate modeling
下载PDF
The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model 被引量:33
16
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期31-47,共17页
Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asi... Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40–110°E, 10–20°N), including the Indian monsoon and the Southeast Asian monsoon, while the EAM de-fined in this paper is located in the subtropical region of East Asia (110–125°E, 20–40°N). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper. In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anoma-lous winter EAM may have some correlation with the succeeding summer EAM, but this relation-ship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well. Key words East Asian monsoon - Interannual variability - Coupled climate model The author wishes to thank Profs. Wu G.X., Zhang X.H., and Dr. Yu Y.Q. for providing the coupled model re-sults. Dr. Yu also kindly provided assistance in using the model output. This work was supported jointly by the Na-tional Natural Science Foundation of China key project ’ The analysis on the seasonal-to-interannual variation of the general circulation’ under contract 49735160 and Chinese Academy of Sciences key project ’ The Interannual Va-riability and Predictability of East Asian Monsoon’. 展开更多
关键词 East Asian monsoon Interannual variability coupled climate model
下载PDF
Improved ENSO Forecasts by Assimilating Sea Surface Temperature Observations into an Intermediate Coupled Model 被引量:17
17
作者 郑飞 朱江 +1 位作者 Rong-Hua ZHANG 周广庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期615-624,共10页
A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization sc... A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization scheme, both the magnitude of the nudging parameter and the duration of the assimilation are considered, and initial conditions for both atmosphere and ocean are generated by running the coupled model with SST anomalies nudged to the observations. A comparison with the observations indicates that the scheme can generate realistic thermal fields and surface dynamic fields in the equatorial Pacific through hindcast experiments. An ideal experiment is performed to get the optimal nudging parameters which include the nudging intensity and nudging time length. Twelve-month-long hindcast experiments are performed with the model over the period 1984-2003 and the period 1997-2003. Compared with the original prediction results, the model prediction skills are significantly improved by the nudging method especially beyond a 6-month lead time during the two different periods. Potential problems and further improvements are discussed regarding the new coupled assimilation system. 展开更多
关键词 ENSO intermediate coupled model prediction skill HINDCAST
下载PDF
A Hybrid Coupled Model for the Pacific Ocean–Atmosphere System.Part I: Description and Basic Performance 被引量:8
18
作者 ZHANG Rong-Hua 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期301-318,共18页
A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atm... A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures.In addition,various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM,including stochastic forcing of atmospheric winds,and feedbacks associated with freshwater flux,ocean biology-induced heating (OBH),and tropical instability waves (TIWs).In addition to its computational efficiency,the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively,allowing their modulating effects on ENSO to be examined in a clean and clear way.In this paper,examples are given to illustrate the ability of the HCM to depict the mean ocean state,the circulation pathways connecting the subtropics and tropics in the western Pacific,and interannual variability associated with ENSO.As satellite data are taken to parameterize processes that are not explicitly represented in the HCM,this work also demonstrates an innovative method of using remotely sensed data for climate modeling.Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part Ⅱ of this study. 展开更多
关键词 hybrid coupled model ocean-atmosphere coupling ENSO FORCING feedback satellite data
下载PDF
Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model 被引量:13
19
作者 Dong-mei Sun Xiao-min Li +1 位作者 Ping Feng Yong-ge Zang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期183-194,共12页
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos... Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress. 展开更多
关键词 coupled liquid-gas-solid three-phase model Pore-air pressure UNSATURATED soil slope stability Rainfall INFILTRATION
下载PDF
A Flexible Coupled Ocean-Atmosphere General Circulation Model 被引量:12
20
作者 俞永强 宇如聪 +1 位作者 张学洪 刘海龙 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第1期169-190,共22页
Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1 (CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1’... Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1 (CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1’s oceanic component model with IAP L30T63 global oceanic general circulation model and some necessary modifications of the other component models. After the coupled model FGCM-0 is spun up for dozens of years, it has been run for 60 years without flux correction. The model does not only show the reasonable long-term mean climatology, but also reproduce a lot of features of the interannual variability of climate, e.g. the ENSO-like events in the tropical Pacific Ocean and the dipole mode pattern in the tropical Indian Ocean. Comparing FGCM-0 with the NCAR CSM-1, some common features are found, e.g. the overestimation of sea ice in the North Pacific and the simulated double ITCZ etc. The further analyses suggest that they may be attributed to errors in the atmospheric model. 展开更多
关键词 coupled model ENSO Climate drift
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部