期刊文献+
共找到4,249篇文章
< 1 2 213 >
每页显示 20 50 100
Impact of cooling rate on mechanical properties and failure mechanism of sandstone under thermal-mechanical coupling effect
1
作者 Pingye Guo Peng Zhang +2 位作者 Mohua Bu Hang Xing Manchao He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期97-116,共20页
High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical propert... High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region. 展开更多
关键词 High geo-temperature Thermo-mechanical coupling effect Cooling rate SANDSTONE PFC
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics
2
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Global simulation of plasma series resonance effect in radio frequency capacitively coupled Ar/O_(2) plasma
3
作者 白雪 徐海文 +3 位作者 田崇彪 董婉 宋远红 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期422-429,共8页
Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the p... Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the plasma series resonance(PSR)effect is easily observed in electrically asymmetric and geometrically asymmetric discharges,which could largely influence the power absorption,ionization rate,etc.In this work,the PSR effect arising from geometrically and electrically asymmetric discharge in argon-oxygen mixture gas is mainly investigated by using a plasma equivalent circuit model coupled with a global model.At relatively low pressures,as Ar content(α)increases,the inductance of the bulk is weakened,which leads to a more obvious PSR phenomenon and a higher resonance frequency(ω_(psr)).When the Ar content is fixed,varying the pressure and gap distance could also have different effects on the PSR effect.With the increase of the pressure,the PSR frequency shifts towards the higher order,but in the case of much higher pressure,the PSR oscillation would be strongly damped by frequent electron-neutral collisions.With the increase of the gap distance,the PSR frequency becomes lower.In addition,electrically asymmetric waveforms applied to a geometrically asymmetric chamber may weaken or enhance the asymmetry of the discharge and regulate the PSR effect.In this work,the Ar/O_(2) electronegative mixture gas is introduced in a capacitive discharge to study the PSR effect under geometric asymmetry effect and electrical asymmetry effect,which can provide necessary guidance in laboratory research and current applications. 展开更多
关键词 capacitively coupled Ar/O_(2)plasma PSR effect plasma equivalent circuit model global model
下载PDF
ANALYSIS OF SHAKEDOWN OF FG BREE PLATE SUBJECTED TO COUPLED THERMAL-MECHANICAL LOADINGS
4
作者 Xianghe Peng Ning Hu +1 位作者 Hengwei Zheng Cuirong Fang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期95-108,共14页
The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearl... The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearly elastic and nonlinear isotropic hardening with elastic modulus,yield strength and the thermal expansion coeffcient varying exponentially through the thickness of the plate. The boundaries between the shakedown area and the areas of elasticity,incremental collapse and reversed plasticity are determined,respectively. The shakedown of the counterpart made of homogeneous material with average material properties is also analyzed. The comparison between the results obtained in the two cases exhibits distinct qualitative and quantitative difference,indicating the importance of shakedown analysis for FG structures. Since FG structures are usually used in the cases where severe coupled cyclic thermal and mechanical loadings are applied,the approach developed and the results obtained are significant for the analysis and design of such kind of structures. 展开更多
关键词 functionally graded material the Bree plate coupled thermal-mechanical loading shakedown
下载PDF
Analysis of thermal-mechanical coupled characteristics of vehicle twin-tube shock absorber
5
作者 么鸣涛 龙凯 贺李平 《Journal of Beijing Institute of Technology》 EI CAS 2014年第2期203-209,共7页
A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop p... A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber. 展开更多
关键词 shock absorber thermal-mechanical coupled model temperature rising closed-loop positive feedback
下载PDF
Thermal-Mechanical Coupled FE Analysis for Rotary Shaft Seals
6
作者 Gyorgy Szabó Károly Váradi 《Modern Mechanical Engineering》 2018年第1期95-110,共16页
The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The beh... The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure. 展开更多
关键词 coupled FE Analysis thermal-mechanical coupling Rotary Shaft Seals NBR Rubber VISCOELASTICITY
下载PDF
THE COUPLED EFFECTS OF MECHANICAL DEFORMATION AND ELECTRONIC PROPERTIES IN CARBON NANOTUBES 被引量:6
7
作者 郭万林 郭宇锋 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期192-198,共7页
Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can ... Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes.The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube.Pure external applied load has little effect on charge distribution,but indeed influences the energy gap.Tensile load leads to a narrower energy gap and compressive load increases the gap.When the CNT is tensioned under an external electric field,the effect of mechanical load on the electronic structures of the CNT becomes significant,and the applied electric field may reduce the critical mechanical tension load remarkably.Size effects are also discussed. 展开更多
关键词 quantum mechanics quantum-molecular dynamics single-walled carbon nanotube coupled effect mechanical-electronic property
下载PDF
Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
8
作者 杜彬豪 杨谋 胡梁宾 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期477-488,共12页
Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional... Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters. 展开更多
关键词 anomalous Josephson effect d-wave pairing Rashba spin-orbit coupling Zeeman splitting
下载PDF
Coupling effects of morphology and inner pore distribution on the mechanical response of calcareous sand particles
9
作者 Xin Li Yaru Lv +3 位作者 Yuchen Su Kunhang Zou Yuan Wang Wenxiong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1565-1579,共15页
Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope... Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution. 展开更多
关键词 Calcareous sand coupling effects Outer shape Internal pore distribution Particle strength Failure mode
下载PDF
Tailoring topological corner states in photonic crystals by near-and far-field coupling effects
10
作者 张兆健 兰智豪 +2 位作者 陈欢 于洋 杨俊波 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期318-324,共7页
We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the... We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices. 展开更多
关键词 topological corner states photonic crystal slabs optical coupling effects surface lattice resonances
下载PDF
Numerical simulation of a sheet metal extrusion process by using thermal-mechanical coupling EAS FEM 被引量:2
11
作者 ZhanghuaChen T.C.Lee 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期378-382,共5页
The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the def... The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness. 展开更多
关键词 enhanced assumed strain element thermal-mechanical coupling process houyrglass mode
下载PDF
Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas 被引量:1
12
作者 杨唯 高飞 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期118-133,共16页
A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1-20 Pa.The model con... A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1-20 Pa.The model consists of electron kinetics module,electromagnetics module,and global model module.It allows for self-consistent description of non-local electron kinetics and collisionless electron heating in terms of the conductivity of homogeneous hot plasma.Simulation results for non-local conductivity case are compared with predictions for the assumption of local conductivity case.Electron densities and effective electron temperatures under non-local and local conductivities show obvious differences at relatively low pressures.As increasing pressure,the results under the two cases of conductivities tend to converge,which indicates the transition from collisionless to collisional regimes.At relatively low pressures the local negative power absorption is predicted by non-local conductivity case but not captured by local conductivity case.The two-dimensional(2D)profiles of electron current density and electric field are coincident for local conductivity case in the pressure range of interest,but it roughly holds true for non-local conductivity case at very high pressure.In addition,an effective conductivity with consideration of non-collisional stochastic heating effect is introduced.The effective conductivity almost reproduces the electron density and effective electron temperature for the non-local conductivity case,but does not capture the non-local relation between electron current and electric field as well as the local negative power absorption that is observed for nonlocal conductivity case at low pressures. 展开更多
关键词 inductively coupled plasmas conductivity effects electron kinetics plasma parameters electromagnetic wave characteristics ELECTRODYNAMICS
下载PDF
Coupled hydro-mechanical effect of a fractured rock mass under high water pressure 被引量:2
13
作者 Zhongming Jiang Shurong Feng Sheng Fu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期88-96,共9页
To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displ... To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model. 展开更多
关键词 fractured rock mass permeability under the condition of high water head hydro-mechanical coupling effect
下载PDF
Mechanical behaviours of bedded sandstone under hydromechanical coupling
14
作者 Junwen Zhang Zhixiang Song +7 位作者 Lichao Zhang Shaokang Wu Shanyong Wang Yang Zhang Xukai Dong Jinxin Wang Yanbo Han Baohua Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1245-1261,共17页
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be... The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines. 展开更多
关键词 Hydromechanical coupling Bedded sandstones Mechanical behaviour Bedding effect Failure mechanism
下载PDF
In-situ coupling construction of interface bridge to enhance electrochemical stability of all solid-state lithium metal batteries
15
作者 Qianwei Zhang Rong Yang +7 位作者 Chao Li Lei Mao Bohai Wang Meng Luo Yinglin Yan Yiming Zou Lisheng Zhong Yunhua Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期18-26,I0003,共10页
Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical pro... Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical properties.However,the organic/inorganic interface is incompatible,resulting in slow lithium-ion transport at the interface.Therefore,the compatibility of organic/inorganic interface is an urgent problem to be solved.Inspired by the concept of“gecko eaves”,polymer-based composite solid electrolytes with dense interface structures were designed.The bridging of organic/inorganic interfaces was established by introducing silane coupling agent(3-chloropropyl)trimethoxysilane(CTMS)into the PEO-3D-LLZAO(PL)electrolyte.The in-situ coupling reaction improves the interface affinity,strengthens the organic/inorganic interaction,reduces the interface resistance,and thus achieves an efficient interface ion transport network.The prepared PEO-3D-LLZAO-CTMS(PLC)electrolyte exhibits enhanced ionic conductivity of 6.04×10^(-4)S cm^(-1)and high ion migration number(0.61)at 60℃and broadens the electrochemical window(5.1 V).At the same time,the PLC electrolyte has good thermal stability and high mechanical properties.Moreover,the Li Fe PO_(4)|PLC|Li battery has excellent rate performance and cycling stability with a capacity decay rate of 2.2%after 100 cycles at 60℃and 0.1 C.These advantages of PLC membranes indicate that this design approach is indeed practical,and the in-situ coupling method provides a new approach to address interface compatibility issues. 展开更多
关键词 Organic/inorganic interphase coupling effect Composite electrolyte Interface compatibility
下载PDF
Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
16
作者 张金珂 张婷婷 +2 位作者 张玉亮 王光辉 邓冬梅 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期349-356,共8页
Based on the microscopic nonlocal optical response theory, the resonant radiation force exerted on a semiconductorcoupled quantum well nanostructure(CQWN), induced by the nonlocal interaction between lasers and electr... Based on the microscopic nonlocal optical response theory, the resonant radiation force exerted on a semiconductorcoupled quantum well nanostructure(CQWN), induced by the nonlocal interaction between lasers and electrons in conduction bands, is investigated for two different polarized states. The numerical results show that the spatial nonlocality of optical response can cause a radiation shift(blue-shift) for the spectrum of the resonant radiation force, which is dependent on the CQWN width ratio, the barrier height, and polarized states sensitively. It is also confirmed that the resonant radiation force is steerable by the incident and polarized directions of incident light. This work may provide an advantageous method for detecting internal quantum properties of nanostructures, and open novel and raising possibilities for optical manipulation of nano-objects using laser-induced radiation force. 展开更多
关键词 NONLOCAL effect RESONANT radiation FORCE coupled quantum WELL
下载PDF
Synergistic coupling among Mg_(2)B_(2)O_(5),polycarbonate and N,Ndimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte
17
作者 Yutong Jing Qiang Lv +8 位作者 Yujia Chen Bo Wang Bochen Wu Cheng Li Shengbo Yang Zhipeng He Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期158-168,共11页
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr... Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs. 展开更多
关键词 Composite solid electrolytes Safe Li metal batteries Synergistic coupling effect Poly(vinylidene fluoride-co-hexafluoropro pylene)
下载PDF
Effective-mass theory for coupled quantum dots grown on (11N)-oriented substrates 被引量:2
18
作者 李树深 夏建白 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期1-5,共5页
The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smal... The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices. 展开更多
关键词 coupled quantum dots effective-mass theory electronic structures
下载PDF
Impact of coupling coordination development of port and city environments on urban economic competitiveness:Evidence from the coastal port cities in eastern China
19
作者 LI Zhen-qiang YI Ying +2 位作者 LI Jia-li YOU Xiao-yue ZHOU Qiu-yang 《Ecological Economy》 2024年第1期53-71,共19页
Promoting the coupling coordination development of port and its hinterland city environments is an important way to improve urban economic competitiveness.Based on relevant data of 13 coastal port cities in eastern Ch... Promoting the coupling coordination development of port and its hinterland city environments is an important way to improve urban economic competitiveness.Based on relevant data of 13 coastal port cities in eastern China from 2000 to 2018,this study explores the coupling coordination development of port and city environments and its impact on urban economic competitiveness by constructing the coupling coordination degree model and the panel threshold model.The research results show that:(1)In terms of the coupling coordination development of port and city environments,most coastal ports and their hinterland cities are in a state of moderate or serious disorder.Overall,the degree of coupling coordination of port and city environments needs to be further improved;(2)The coupling coordination degree of port and city environments has a significant impact on urban economic competitiveness,and this effect gradually increases with the development of the ports and the urban economy.Among the variables that impact the urban economic competitiveness,fixed assets investment and foreign trade are significant factors that can enhance urban economic competitiveness.(3)At present,there is a“U-shaped”relationship between the coupling coordination degree of port-city environments and the urban economic competitiveness.This relationship lies on the right side of the inflection point of the“U-shaped”curve.Therefore,following the concept of assigning priority to ecological development,expanding fixed assets investment and actively developing foreign trade can further enhance the urban economic competitiveness. 展开更多
关键词 coastal ports city environments coupling coordination degree urban economic competitiveness threshold effect
下载PDF
The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled SiH_4/NH_3/N_2 plasmas: Two-dimensional simulations
20
作者 刘相梅 宋远红 +1 位作者 姜巍 易林 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期338-343,共6页
A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction ... A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction (including the deposition) is modeled by using surface reaction coefficients. In the present paper we try to identify, by numerical simulations, the effect of variations of the process parameters on the plasma properties. It is found from our simulations that by increasing the gas pressure and the discharge gap, the electron density profile shape changes continuously from an edge-high to a center-high, thus the thin films become more uniform. Moreover, as the N2 /NH3 ratio increases from 6/13 to 10/9, the hydrogen content can be significantly decreased, without decreasing the electron density significantly. 展开更多
关键词 capacitively coupled plasma process conditions effects SiH4/NH3/N2 discharges
下载PDF
上一页 1 2 213 下一页 到第
使用帮助 返回顶部