A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a re- gional ocean modeling system (ROMS). The operational oceanographic modeling system consists of at- mospheric an...A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a re- gional ocean modeling system (ROMS). The operational oceanographic modeling system consists of at- mospheric and hydrodynamic models. The hydrodynamic model, ROMS, is coupled with wave, sediment transport, and water quality modules. The system forecasts the predicted results twice a day on a 72 h basis, including sea surface elevation, currents, temperature, salinity, storm surge height, and wave information for the coastal waters of Korea. The predicted results are exported to the web-GIS-based coastal informa- tion system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies. The ROMS is two-way coupled with a simulating waves nearshore model, SWAN, for the hydrodynamics and waves, nested with the meteorological model, WRE for the atmospheric surface forcing, and externally nested with the eutrophication model, CE-QUAL-ICM, for the water quality. The op- erational model, ROMS, was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea. To validate the predicted results, we used real-time monitoring data derived from remote buoy system, HF-radar, and geostationary ocean color imager (GOCI). This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system (KOOS) with other operational oceanographic systems.展开更多
基金The project entitled Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System funded by the China-Korea Joint Ocean Research Centerthe project entitled"Development of Korea Operational Oceanographic System"funded by the Ministry of Oceans and Fisheries,Koreathe project Functional Improvement of Korea Ocean Satellite Center and Development of the Marine Environment Impact Prediction Program funded by the Korea Institute of Ocean Science and Technology
文摘A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a re- gional ocean modeling system (ROMS). The operational oceanographic modeling system consists of at- mospheric and hydrodynamic models. The hydrodynamic model, ROMS, is coupled with wave, sediment transport, and water quality modules. The system forecasts the predicted results twice a day on a 72 h basis, including sea surface elevation, currents, temperature, salinity, storm surge height, and wave information for the coastal waters of Korea. The predicted results are exported to the web-GIS-based coastal informa- tion system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies. The ROMS is two-way coupled with a simulating waves nearshore model, SWAN, for the hydrodynamics and waves, nested with the meteorological model, WRE for the atmospheric surface forcing, and externally nested with the eutrophication model, CE-QUAL-ICM, for the water quality. The op- erational model, ROMS, was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea. To validate the predicted results, we used real-time monitoring data derived from remote buoy system, HF-radar, and geostationary ocean color imager (GOCI). This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system (KOOS) with other operational oceanographic systems.