In this paper, accurate and efficient simulation of cell motion in a biological fluid flow is investigated. The membrane of a moving cell is represented by athin shell composed of incompressible neo-Hookean elastic ma...In this paper, accurate and efficient simulation of cell motion in a biological fluid flow is investigated. The membrane of a moving cell is represented by athin shell composed of incompressible neo-Hookean elastic materials and the liquidsaround the membrane are approximated as incompressible Newtonian flows with lowReynolds numbers. The biofluid mechanics is approximated by the Stokes flow equations. A low-order BEM model is developed for the two biological fluids coupled atthe membrane surface. The moving boundary problem in fluid mechanics can be effectively solved using the BEM with a GMRES solver. The FEM model based on a flatthin shell element is further developed to predict the membrane load due to the largedeformation of a moving cell. Computational efficiency is greatly improved due tothe one-dimensional reduction in the present BEM and FEM models. The BEM solverfor the biological fluids is coupled with the FEM solver for the cell membrane at themembrane surface. The position of the membrane surface nodes is advanced in time byusing the classical fourth-order Runge-Kutta method. Numerical instability is avoidedby using a relatively small time step. Further numerical instabilities in the FEM solveris alleviated by using various techniques. The present method is applied to the FSIproblems of cell motion in a cylindrical flow. Numerical examples can illustrate thedistinct accuracy, efficiency and robustness of the present method. Furthermore, theimportance of bending stiffness of a cell membrane for stable cell motion simulation isemphasized. It is suggested that the present approach be an appealing alternative forsimulating the fluid-structure interaction of moving cells.展开更多
The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while fo...The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.展开更多
The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled qua...The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.展开更多
Inductively coupled plasma optical emission spectrometric approach(1CP-OES) is used to determine the potassium content as principal component in pyrotechnic compositions used for fireworks and firecrackers. Element ...Inductively coupled plasma optical emission spectrometric approach(1CP-OES) is used to determine the potassium content as principal component in pyrotechnic compositions used for fireworks and firecrackers. Element of potassium is conunonly found in potassium nitrate and potassium perchlorate in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that potassium nitrate content in pyrotechnics is between 10% to 60% and the potassium perchlorate content is between 20% to 70%,which counted in the content of potassium element is between 4% to 23%. Concept of this method: considering the weight of the sample is 400rag,constant volume is 1L and the concentration of potassium is between 10 mg/L to 90 mg/L in sample solution, the determination scope of the method for the potassium content would be between 1% to 23%.Further experiments proved that the fitting correlation coefficient of potassium calibration curve is 0.9997 or higher, recovery is 89.15%-100.23%.The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.展开更多
Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrack...Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrackers. Elements of magnesium and aluminum are commonly found in aluminum powder or magnesium-aluminum alloy powder in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that the magnesium content in pyrotechnics is between 8% to 30% and the aluminum content is between 8% to 35%(roughly).Concept of this method: suppose the weight of the sample is 400rag,constant volume is IL and the concentlation of magnesium and aluminum is between 12mg/L to 160mg/L in sample solution, the determination scope of the method for magnesium and aluminum content would be between 3% to 40%.Further experiments proved that the fitting correlation coefficient of the magnesium calibration curve is 0.9999 or higher, recovery is 101.01% -101.96%.The fitting correlation coefficient of the aluminum calibration curve is 0.9999 or higher, recovery is 99.36%-103.07%. The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.展开更多
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can...The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.展开更多
The integration of gray and green infrastructure has proven to be a feasible approach for managing stormwater in established urban areas.However,evaluating the specific contributions of such coupled strategies is chal...The integration of gray and green infrastructure has proven to be a feasible approach for managing stormwater in established urban areas.However,evaluating the specific contributions of such coupled strategies is challenging.This study introduced a novel integrated hydrological-hydrodynamic model that takes into account the layout of low-impact development(LID)facilities along with pipeline alignment and rehabilitation.Reliable results from modeling were used to assess the individual contribution of LID and improved drainage facilities to urban flooding mitigation.We selected a natural island in Guangzhou City,China,as the study site.The results indicate that combining three LID measures,namely green roofs,sunken green spaces,and permeable pavements,can reduce total runoff by 41.7%to 25.89%for rainfall recurrence periods ranging from 1year to 100 years,and decrease the volume of nodal overflow by nearly half during rainfall events of less than 10-year return period.By integrating LID measures with the upgraded gray infrastructure,the regional pipeline overloading condition is substantially alleviated,resulting in a significant improvement in pipeline system resilience.For urban flooding control,it is recommended to integrate sufficient green space and avoid pipe-laying structural issues during urban planning and construction.The findings may assist stakeholders in developing strategies to best utilize gray and green infrastructure in mitigating the negative eff ects of urban flooding.展开更多
A computational fluid dynamics model is used for the simulation of laminar flow ofwater-Al2O3 nanofluid in a confined slot impinging jet. The (steady-state and two-dimensional) Eulerian-Lagrangian model is used cons...A computational fluid dynamics model is used for the simulation of laminar flow ofwater-Al2O3 nanofluid in a confined slot impinging jet. The (steady-state and two-dimensional) Eulerian-Lagrangian model is used considering fluid-particle and particle-wall interactions (i.e., two-way coupling). A collocated grid and the SIMPLE algorithm are used for the coupling of pressure and velocity fields. The deposition model is used to investigate the effect of particle deposition on the impingement surface. Results indicate that the particle trajectory becomes stable farther from the jet with a rising Reynolds number and jet- impingement surface distance ratio. The heat transfer coefficient of the mixture model is higher than that of the Eulerian-Lagrangican model.展开更多
The vortex induced vibration(VIV) of a flexible plate behind the square head with various flow velocities is simulated. The closely coupling approach is used to model this fluid-structure interaction problem.The fluid...The vortex induced vibration(VIV) of a flexible plate behind the square head with various flow velocities is simulated. The closely coupling approach is used to model this fluid-structure interaction problem.The fluid governed by the incompressible Navier-Stokes equations is solved in arbitrary Lagrangian-Eulerian(ALE)frame by the finite volume method. The structure described by the equations of the elastodynamics in Lagrangian representation is discretized by the finite element approach. The numerical results show that the resonance occurs when the frequency of vortex shedding from square head coincides with the natural frequency of plate. And the amplitude of both the structure motion and the fluid load keeps increasing with the time. Furthermore, it is also found that in particular range of flow velocity the vibration of the plate would reach a periodical state. The amplitude of plate oscillating increases with the growth of velocity, while the frequency is locked.展开更多
A number of azacalix[2]pyrimidine[2]triazines were synthesized in moderate to good yields from both a step-wise fragment coupling approach and a one-pot reaction strategy starting from 4,6-diaminopyrimidines and cyanu...A number of azacalix[2]pyrimidine[2]triazines were synthesized in moderate to good yields from both a step-wise fragment coupling approach and a one-pot reaction strategy starting from 4,6-diaminopyrimidines and cyanuric chloride.Nucleophilic aromatic substitution reaction of resulting dichloro-substituted azacalix[2]-pyrimidine[2]triazines with NH_(4)Cl led to the formation of NH_(2)-bearing azacalix[2]pyrimidine[2]triazine analogs.Azacalix[2]pyrimidine[2]triazines adopted symmetric 1,3-alternate conformations in solution while twisted 1,3-alternate conformations were observed in the solid state.In the presence of different additives during the growth of single crystals,azacalix[2]pyrimidine[2]triazines containing amino(-NH_(2))groups gave varied self-assembled structures due to the formation of different intermolecular hydrogen bond motifs.展开更多
An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect bra...An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.展开更多
文摘In this paper, accurate and efficient simulation of cell motion in a biological fluid flow is investigated. The membrane of a moving cell is represented by athin shell composed of incompressible neo-Hookean elastic materials and the liquidsaround the membrane are approximated as incompressible Newtonian flows with lowReynolds numbers. The biofluid mechanics is approximated by the Stokes flow equations. A low-order BEM model is developed for the two biological fluids coupled atthe membrane surface. The moving boundary problem in fluid mechanics can be effectively solved using the BEM with a GMRES solver. The FEM model based on a flatthin shell element is further developed to predict the membrane load due to the largedeformation of a moving cell. Computational efficiency is greatly improved due tothe one-dimensional reduction in the present BEM and FEM models. The BEM solverfor the biological fluids is coupled with the FEM solver for the cell membrane at themembrane surface. The position of the membrane surface nodes is advanced in time byusing the classical fourth-order Runge-Kutta method. Numerical instability is avoidedby using a relatively small time step. Further numerical instabilities in the FEM solveris alleviated by using various techniques. The present method is applied to the FSIproblems of cell motion in a cylindrical flow. Numerical examples can illustrate thedistinct accuracy, efficiency and robustness of the present method. Furthermore, theimportance of bending stiffness of a cell membrane for stable cell motion simulation isemphasized. It is suggested that the present approach be an appealing alternative forsimulating the fluid-structure interaction of moving cells.
文摘The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.
基金Supported by the National Natural Science Foundation of China under Grant No 61275075the Beijing Natural Science Foundation under Grant Nos 4132035 and 4144080
文摘The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.
文摘Inductively coupled plasma optical emission spectrometric approach(1CP-OES) is used to determine the potassium content as principal component in pyrotechnic compositions used for fireworks and firecrackers. Element of potassium is conunonly found in potassium nitrate and potassium perchlorate in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that potassium nitrate content in pyrotechnics is between 10% to 60% and the potassium perchlorate content is between 20% to 70%,which counted in the content of potassium element is between 4% to 23%. Concept of this method: considering the weight of the sample is 400rag,constant volume is 1L and the concentration of potassium is between 10 mg/L to 90 mg/L in sample solution, the determination scope of the method for the potassium content would be between 1% to 23%.Further experiments proved that the fitting correlation coefficient of potassium calibration curve is 0.9997 or higher, recovery is 89.15%-100.23%.The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.
文摘Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrackers. Elements of magnesium and aluminum are commonly found in aluminum powder or magnesium-aluminum alloy powder in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that the magnesium content in pyrotechnics is between 8% to 30% and the aluminum content is between 8% to 35%(roughly).Concept of this method: suppose the weight of the sample is 400rag,constant volume is IL and the concentlation of magnesium and aluminum is between 12mg/L to 160mg/L in sample solution, the determination scope of the method for magnesium and aluminum content would be between 3% to 40%.Further experiments proved that the fitting correlation coefficient of the magnesium calibration curve is 0.9999 or higher, recovery is 101.01% -101.96%.The fitting correlation coefficient of the aluminum calibration curve is 0.9999 or higher, recovery is 99.36%-103.07%. The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.
基金Project supported by the National Natural Science Foundation of China(No.10832007)the Shanghai Leading Academic Discipline Project(No.B206)
文摘The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.
基金supported by the State Key Laboratory of Subtropical Building and Urban Science(Grant No.2023ZA01)the Science and Technology Program of Guangzhou,China(Grant No.202201010271)the National Natural Science Foundation of China(Grant No.52109018)。
文摘The integration of gray and green infrastructure has proven to be a feasible approach for managing stormwater in established urban areas.However,evaluating the specific contributions of such coupled strategies is challenging.This study introduced a novel integrated hydrological-hydrodynamic model that takes into account the layout of low-impact development(LID)facilities along with pipeline alignment and rehabilitation.Reliable results from modeling were used to assess the individual contribution of LID and improved drainage facilities to urban flooding mitigation.We selected a natural island in Guangzhou City,China,as the study site.The results indicate that combining three LID measures,namely green roofs,sunken green spaces,and permeable pavements,can reduce total runoff by 41.7%to 25.89%for rainfall recurrence periods ranging from 1year to 100 years,and decrease the volume of nodal overflow by nearly half during rainfall events of less than 10-year return period.By integrating LID measures with the upgraded gray infrastructure,the regional pipeline overloading condition is substantially alleviated,resulting in a significant improvement in pipeline system resilience.For urban flooding control,it is recommended to integrate sufficient green space and avoid pipe-laying structural issues during urban planning and construction.The findings may assist stakeholders in developing strategies to best utilize gray and green infrastructure in mitigating the negative eff ects of urban flooding.
文摘A computational fluid dynamics model is used for the simulation of laminar flow ofwater-Al2O3 nanofluid in a confined slot impinging jet. The (steady-state and two-dimensional) Eulerian-Lagrangian model is used considering fluid-particle and particle-wall interactions (i.e., two-way coupling). A collocated grid and the SIMPLE algorithm are used for the coupling of pressure and velocity fields. The deposition model is used to investigate the effect of particle deposition on the impingement surface. Results indicate that the particle trajectory becomes stable farther from the jet with a rising Reynolds number and jet- impingement surface distance ratio. The heat transfer coefficient of the mixture model is higher than that of the Eulerian-Lagrangican model.
基金the National Natural Science Foundation of China(No.10832007)the Shanghai Leading Academic Discipline Project(No.B206)
文摘The vortex induced vibration(VIV) of a flexible plate behind the square head with various flow velocities is simulated. The closely coupling approach is used to model this fluid-structure interaction problem.The fluid governed by the incompressible Navier-Stokes equations is solved in arbitrary Lagrangian-Eulerian(ALE)frame by the finite volume method. The structure described by the equations of the elastodynamics in Lagrangian representation is discretized by the finite element approach. The numerical results show that the resonance occurs when the frequency of vortex shedding from square head coincides with the natural frequency of plate. And the amplitude of both the structure motion and the fluid load keeps increasing with the time. Furthermore, it is also found that in particular range of flow velocity the vibration of the plate would reach a periodical state. The amplitude of plate oscillating increases with the growth of velocity, while the frequency is locked.
基金We thank the National Natural Science Foundation of China(Nos.21132005,21121004)the Ministry of Science and Technology of China(Nos.2011CB932501,2013CB834504)for financial support.
文摘A number of azacalix[2]pyrimidine[2]triazines were synthesized in moderate to good yields from both a step-wise fragment coupling approach and a one-pot reaction strategy starting from 4,6-diaminopyrimidines and cyanuric chloride.Nucleophilic aromatic substitution reaction of resulting dichloro-substituted azacalix[2]-pyrimidine[2]triazines with NH_(4)Cl led to the formation of NH_(2)-bearing azacalix[2]pyrimidine[2]triazine analogs.Azacalix[2]pyrimidine[2]triazines adopted symmetric 1,3-alternate conformations in solution while twisted 1,3-alternate conformations were observed in the solid state.In the presence of different additives during the growth of single crystals,azacalix[2]pyrimidine[2]triazines containing amino(-NH_(2))groups gave varied self-assembled structures due to the formation of different intermolecular hydrogen bond motifs.
基金Project supported by the National Natural Science Foundation of China(No.61674036)
文摘An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.