We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data tra...Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data transmission in marine environment detection at home.In order to improve the transmission performance of the system in practical communication system,optimizing the design by directly changing the circuit parameters is time-consuming and expensive.Therefore,a set of inductive coupling transmission channel analysis system is designed based on virtual instrument to improve the transmission rate and reliability of inductive coupling transmission system.The bit error rate of channel system at different frequency and noise levels are tested by using three kinds of digital modulation mode including amplitude shift keying(ASK),frequency shift keying(FSK)and differential phase shift keying(DPSK),taking square wave and sine wave as a carrier.Finally,the sine wave is selected to be carrier signal and DPSK is chosen to be modulation mode.The reliable transmission of signal with the error rate less than0.005and the transmission rate of9600bps,at the noise level of-10dB,is realized and verified by the debugging circuit experiments with multi-nodes in the laboratory.The study provides an important experimental evidence for improving signal transmission reliability of inductive coupling transmission system.展开更多
In this study,a mathematical model of multipath channels is established,and the delay parameters of 10-path models are calculated at 300 m.A multipath-channel hardware simulator based on a field programmable gate arra...In this study,a mathematical model of multipath channels is established,and the delay parameters of 10-path models are calculated at 300 m.A multipath-channel hardware simulator based on a field programmable gate array(FPGA)is designed and verified at 100 k Hz,200 k Hz,500 k Hz,1 MHz,and 24 MHz transmission frequencies.According to the characteristics of the ocean induction coupling chain channel,the orthogonal frequency-division multiplexing(OFDM)algorithm parameters are designed by referring to the wireless communication protocol.The appropriate length cyclic prefix(CP)is added in the OFDM symbol to resist the multipath effect of the seawater channel,and the FPGA hardware transceiver based on the OFDM algorithm is realized.The hardware platform of the ocean induction coupling chain communication system is developed to resist the multipath effect of the seawater channel and tested at 24 MHz.The experimental results show that 800 ns is the best CP length for the developed system,which can effectively resist the multipath effect,with a signal-to-noise ratio above 24 d B and a bit error rate below 1%.This study provides a hardware simulation test platform and an effective method to resist the multipath effect of a seawater channel and improve the transmission performance of the seawater channel.展开更多
The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation me...The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation method on pipeline interference voltage under harmonic induction is presented.The results show that the Carson integral formula is more accurate in calculating the mutual impedance at higher frequencies.Then,an integrated train-network-pipeline model is established to estimate the influences of harmonic distortion and resonance on an MP.It is revealed that the higher the harmonic cur-rent distortion rate of the traction load,the larger the interference voltage on an MP.Particularly,the interference voltage is amplified up to 7 times when the TPSS resonates,which is worthy of attention.In addition,the parameters that affect the variation and sensitivity of the interference voltage are studied,namely,the pipeline coating material,locomotive position,and soil resistivity,indicating that soil resistivity and 3PE(3-layer polyethylene)anticorrosive coating are more sensitive to harmonic induction.Field test results show that the harmonic distortion can make the interference voltage more serious,and the protective measures are optimized.展开更多
Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer sub...Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer substrate surfaces, which were exposed to different kinds of plasma treatment, was identified by scanning electron microscopy(SEM) analysis, peel strength of the copper coating and water surface contact angle. The adhesion of the substrate was largely enhanced by plasma treatment and the copper deposited coating reached a value of 7.68 kgf/m in verifying the adhesion of the copper coating with polymer material. The quality of the line/space 50/50 μm produced in the laboratory was examined by the pressure cooker test and proved to meet the requirement.展开更多
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numeri...We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.展开更多
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m...Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.展开更多
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
The electrical parameters of H_(2)/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition ...The electrical parameters of H_(2)/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition and pressure on electron density,the effective electron temperature and the electron energy probability functions(EEPFs)at different spatial positions are present.In driver region,with the introduction of a small amount of Ar at 0.3 Pa,there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature.Additionally,the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron collision.However,this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge.The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa,as do the patterns of electron density variation between these two regions for differing Ar fractions.At 5 Pa,as the discharge transitions from H_(2)to Ar,the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region.This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge.In order to validate the experimental results,we use the COMSOL simulation software to calculate electrical parameters under the same conditions.The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.展开更多
Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect t...Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect the environment and reduce travel costs.However,the EV charging system has a single charging source,and the charging rate is limited.In this paper,an EV wireless charging system based on dual source power supply has been developed.It realizes intelligent switching between 12 V photovoltaic output and 220 V AC dual source power,and has wireless transmission function.Based on the proposed power supply architecture,the micro wireless charging model is built,which enables the EV model to store power and realize static and mobile control through the wireless induction charging system.展开更多
本文利用微波消解对黄豆进行前处理,采用电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometer,ICP-MS)对消解液中26种元素的含量进行测定,对方法的线性、精密度、准确度及质控样品进行验证。结果表明,各元素标准曲线...本文利用微波消解对黄豆进行前处理,采用电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometer,ICP-MS)对消解液中26种元素的含量进行测定,对方法的线性、精密度、准确度及质控样品进行验证。结果表明,各元素标准曲线的相关系数均≥0.9990,线性关系良好,检出限为0.000583~0.453000 mg·kg^(-1),相对标准偏差≤5.513%,加标回收率为77%~113%,说明该方法能准确检测黄豆中无机元素,满足日常监测需求。展开更多
RLC model is used to estimate the coupling noise between interconnect wires and make some analysis through the simulation result. Based on the analysis conclusion,some algorithms are developed to adjust the rou ting ...RLC model is used to estimate the coupling noise between interconnect wires and make some analysis through the simulation result. Based on the analysis conclusion,some algorithms are developed to adjust the rou ting result with crosstalk constraint.展开更多
[ Objective] To study the effects of different pretreatment methods on determination of microelement in feed and thus find the best pre treatment method for each microetement, t Method] The samples (concentrated feed...[ Objective] To study the effects of different pretreatment methods on determination of microelement in feed and thus find the best pre treatment method for each microetement, t Method] The samples (concentrated feeding stuff and fodder) were pretreated through throe methods, that is, dry incineration method, HNOs HCIO, wetdecomposition method and microwave digestion method. Then the content of seven kinds of mi croelement (AI, Ca, Cu, Fe, Mn, Se and Zn) was determined by inductively coupled plasma atomic emission spectrometer (ICPAES). I Result] These three methods were all suitable for the determination of Cu, Mn and Zn in concentrated feeding stuff and the determination of Cu and Ca in fodder. The content of Cu and Ca was higher in fodder detected by HNO3 HCIO, wetdecomposition method. The microwave digestion method was suitable for the determination of AI and Ca in concentrated feeding stuff and the determination of AI, Fe, Mn and Zn in fodder. The dry incinera tion method was fit for the determination of Fe in concentrated feeding stuff. [ Condusionl The content of different microelements should be deter mined after the feed is treated with different Ioretreatment methods.展开更多
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a ...A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.展开更多
Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substr...Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.展开更多
In this paper,the determination of six heavy metal ions (arsenic,lead,cadmium,chromium,mercury and nickel) in the Chinese Herb by inductively coupled plasma-mass spectrometry (ICP-MS) was studied.The samples were dige...In this paper,the determination of six heavy metal ions (arsenic,lead,cadmium,chromium,mercury and nickel) in the Chinese Herb by inductively coupled plasma-mass spectrometry (ICP-MS) was studied.The samples were digested by nitric acid and hydrogen peroxide in a microwave oven.The Sc,Y,In,Bi were added as internal standards to eliminate the matrix interferences.The results show that most of the relative standard deviations of these trace elements were below 3.5%,the standard recoveries of these elements were in the range of 91%-107%,and the detection limits were in the range of 0.001-0.006 μg·L-1. This method is accurate,rapid,convenience,and can be applied to the determination of arsenic,lead,cadmium,chromium,mercury and nickel in Chinese Herb with good results.展开更多
Objective The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 26 rare earth elements (REEs), and to provide the basic data for establishing and revising food...Objective The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 26 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Methods Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2020. Results 2 231 samples were analyzed and 29 221 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. Conclusion 16 REEs in the major foods were at very low contamination levels in the investigated regions.展开更多
An inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed to determine 19 elements in safflower, a traditional Chinese medicinal he...An inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed to determine 19 elements in safflower, a traditional Chinese medicinal herb from Xinjiang Autonomous Region and Henan Province of China. Totally 19 elements in safflower included heavy metals, i.e. As, Cd, Cu, Hg and Pb, and wholesome elements, i.e. Al, Ca, Co, Cr, Fe, Mg, Mn, Mo, Ni, P, Se, Sr, V and Zn. The results showed that the concentrations of heavy metals in safflower samples were both low, all of which met the national hygiene standards except for Pb in Xinjiang sample. Meanwhile, the distribution tendency of elements in the two samples was similar, which indicated that the plant might absorb given elements in a proportional way. The method can be used for the quality control of elements in safflower, and it provides a way for the determination of the contents of safflower from Xinjiang and Henan.展开更多
Inductively coupled plasma mass spectrometry(ICP-MS) was used to determine the concentration of Pb in atmospheric particulate samples,and the enrichment factor was calculated.The causes of the results were also discus...Inductively coupled plasma mass spectrometry(ICP-MS) was used to determine the concentration of Pb in atmospheric particulate samples,and the enrichment factor was calculated.The causes of the results were also discussed.展开更多
文摘We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
基金National Natural Science Foundation of China(No.41506122)
文摘Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data transmission in marine environment detection at home.In order to improve the transmission performance of the system in practical communication system,optimizing the design by directly changing the circuit parameters is time-consuming and expensive.Therefore,a set of inductive coupling transmission channel analysis system is designed based on virtual instrument to improve the transmission rate and reliability of inductive coupling transmission system.The bit error rate of channel system at different frequency and noise levels are tested by using three kinds of digital modulation mode including amplitude shift keying(ASK),frequency shift keying(FSK)and differential phase shift keying(DPSK),taking square wave and sine wave as a carrier.Finally,the sine wave is selected to be carrier signal and DPSK is chosen to be modulation mode.The reliable transmission of signal with the error rate less than0.005and the transmission rate of9600bps,at the noise level of-10dB,is realized and verified by the debugging circuit experiments with multi-nodes in the laboratory.The study provides an important experimental evidence for improving signal transmission reliability of inductive coupling transmission system.
基金supported by the National Key Research and Development Program of China(Nos.2017YFC1403403,2017YFC1403304)。
文摘In this study,a mathematical model of multipath channels is established,and the delay parameters of 10-path models are calculated at 300 m.A multipath-channel hardware simulator based on a field programmable gate array(FPGA)is designed and verified at 100 k Hz,200 k Hz,500 k Hz,1 MHz,and 24 MHz transmission frequencies.According to the characteristics of the ocean induction coupling chain channel,the orthogonal frequency-division multiplexing(OFDM)algorithm parameters are designed by referring to the wireless communication protocol.The appropriate length cyclic prefix(CP)is added in the OFDM symbol to resist the multipath effect of the seawater channel,and the FPGA hardware transceiver based on the OFDM algorithm is realized.The hardware platform of the ocean induction coupling chain communication system is developed to resist the multipath effect of the seawater channel and tested at 24 MHz.The experimental results show that 800 ns is the best CP length for the developed system,which can effectively resist the multipath effect,with a signal-to-noise ratio above 24 d B and a bit error rate below 1%.This study provides a hardware simulation test platform and an effective method to resist the multipath effect of a seawater channel and improve the transmission performance of the seawater channel.
基金This work was supported by the National Natural Science Foundation of China(No.51877182).
文摘The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation method on pipeline interference voltage under harmonic induction is presented.The results show that the Carson integral formula is more accurate in calculating the mutual impedance at higher frequencies.Then,an integrated train-network-pipeline model is established to estimate the influences of harmonic distortion and resonance on an MP.It is revealed that the higher the harmonic cur-rent distortion rate of the traction load,the larger the interference voltage on an MP.Particularly,the interference voltage is amplified up to 7 times when the TPSS resonates,which is worthy of attention.In addition,the parameters that affect the variation and sensitivity of the interference voltage are studied,namely,the pipeline coating material,locomotive position,and soil resistivity,indicating that soil resistivity and 3PE(3-layer polyethylene)anticorrosive coating are more sensitive to harmonic induction.Field test results show that the harmonic distortion can make the interference voltage more serious,and the protective measures are optimized.
文摘Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer substrate surfaces, which were exposed to different kinds of plasma treatment, was identified by scanning electron microscopy(SEM) analysis, peel strength of the copper coating and water surface contact angle. The adhesion of the substrate was largely enhanced by plasma treatment and the copper deposited coating reached a value of 7.68 kgf/m in verifying the adhesion of the copper coating with polymer material. The quality of the line/space 50/50 μm produced in the laboratory was examined by the pressure cooker test and proved to meet the requirement.
基金supported by the National Natural Science Foundation of China (Grant No. 11705143)the Open Foundation for Key Laboratories of National Defense Science and Technology of China (Grant No. 6142202031901)the Foundation for Research and Development of Applied Technology in Beilin District of Xi’an,China (Grant No. GX2047)。
文摘We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.
基金supported by the Scientific Research Foundation of Xijing University,China(No.XJ19T03)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201701)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-342).
文摘Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金supported by the National Natural Science Foundation of China(Grant Nos.11935005 and 12075049)the National Key Research and Development Program of China(Grant No.2017YFE0300106).
文摘The electrical parameters of H_(2)/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition and pressure on electron density,the effective electron temperature and the electron energy probability functions(EEPFs)at different spatial positions are present.In driver region,with the introduction of a small amount of Ar at 0.3 Pa,there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature.Additionally,the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron collision.However,this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge.The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa,as do the patterns of electron density variation between these two regions for differing Ar fractions.At 5 Pa,as the discharge transitions from H_(2)to Ar,the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region.This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge.In order to validate the experimental results,we use the COMSOL simulation software to calculate electrical parameters under the same conditions.The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.
基金supported in part by the National Natural Science Foundation of China(No.62371233)in part by the Aviation Science Foundation Project(Nos.2022Z024052003,20230058052001)。
文摘Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect the environment and reduce travel costs.However,the EV charging system has a single charging source,and the charging rate is limited.In this paper,an EV wireless charging system based on dual source power supply has been developed.It realizes intelligent switching between 12 V photovoltaic output and 220 V AC dual source power,and has wireless transmission function.Based on the proposed power supply architecture,the micro wireless charging model is built,which enables the EV model to store power and realize static and mobile control through the wireless induction charging system.
文摘RLC model is used to estimate the coupling noise between interconnect wires and make some analysis through the simulation result. Based on the analysis conclusion,some algorithms are developed to adjust the rou ting result with crosstalk constraint.
文摘[ Objective] To study the effects of different pretreatment methods on determination of microelement in feed and thus find the best pre treatment method for each microetement, t Method] The samples (concentrated feeding stuff and fodder) were pretreated through throe methods, that is, dry incineration method, HNOs HCIO, wetdecomposition method and microwave digestion method. Then the content of seven kinds of mi croelement (AI, Ca, Cu, Fe, Mn, Se and Zn) was determined by inductively coupled plasma atomic emission spectrometer (ICPAES). I Result] These three methods were all suitable for the determination of Cu, Mn and Zn in concentrated feeding stuff and the determination of Cu and Ca in fodder. The content of Cu and Ca was higher in fodder detected by HNO3 HCIO, wetdecomposition method. The microwave digestion method was suitable for the determination of AI and Ca in concentrated feeding stuff and the determination of AI, Fe, Mn and Zn in fodder. The dry incinera tion method was fit for the determination of Fe in concentrated feeding stuff. [ Condusionl The content of different microelements should be deter mined after the feed is treated with different Ioretreatment methods.
文摘A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10575039) and the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (No.2004057408).
文摘Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.
文摘In this paper,the determination of six heavy metal ions (arsenic,lead,cadmium,chromium,mercury and nickel) in the Chinese Herb by inductively coupled plasma-mass spectrometry (ICP-MS) was studied.The samples were digested by nitric acid and hydrogen peroxide in a microwave oven.The Sc,Y,In,Bi were added as internal standards to eliminate the matrix interferences.The results show that most of the relative standard deviations of these trace elements were below 3.5%,the standard recoveries of these elements were in the range of 91%-107%,and the detection limits were in the range of 0.001-0.006 μg·L-1. This method is accurate,rapid,convenience,and can be applied to the determination of arsenic,lead,cadmium,chromium,mercury and nickel in Chinese Herb with good results.
文摘Objective The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 26 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Methods Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2020. Results 2 231 samples were analyzed and 29 221 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. Conclusion 16 REEs in the major foods were at very low contamination levels in the investigated regions.
文摘An inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed to determine 19 elements in safflower, a traditional Chinese medicinal herb from Xinjiang Autonomous Region and Henan Province of China. Totally 19 elements in safflower included heavy metals, i.e. As, Cd, Cu, Hg and Pb, and wholesome elements, i.e. Al, Ca, Co, Cr, Fe, Mg, Mn, Mo, Ni, P, Se, Sr, V and Zn. The results showed that the concentrations of heavy metals in safflower samples were both low, all of which met the national hygiene standards except for Pb in Xinjiang sample. Meanwhile, the distribution tendency of elements in the two samples was similar, which indicated that the plant might absorb given elements in a proportional way. The method can be used for the quality control of elements in safflower, and it provides a way for the determination of the contents of safflower from Xinjiang and Henan.
文摘Inductively coupled plasma mass spectrometry(ICP-MS) was used to determine the concentration of Pb in atmospheric particulate samples,and the enrichment factor was calculated.The causes of the results were also discussed.