The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ...The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.展开更多
The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coast...The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.展开更多
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
The paper presents the comparative study on numerical methods of Euler method,Improved Euler method and fourth-order Runge-Kutta method for solving the engineering problems and applications.The three proposed methods ...The paper presents the comparative study on numerical methods of Euler method,Improved Euler method and fourth-order Runge-Kutta method for solving the engineering problems and applications.The three proposed methods are quite efficient and practically well suited for solving the unknown engineering problems.This paper aims to enhance the teaching and learning quality of teachers and students for various levels.At each point of the interval,the value of y is calculated and compared with its exact value at that point.The next interesting point is the observation of error from those methods.Error in the value of y is the difference between calculated and exact value.A mathematical equation which relates various functions with its derivatives is known as a differential equation.It is a popular field of mathematics because of its application to real-world problems.To calculate the exact values,the approximate values and the errors,the numerical tool such as MATLAB is appropriate for observing the results.This paper mainly concentrates on identifying the method which provides more accurate results.Then the analytical results and calculates their corresponding error were compared in details.The minimum error directly reflected to realize the best method from different numerical methods.According to the analyses from those three approaches,we observed that only the error is nominal for the fourth-order Runge-Kutta method.展开更多
In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved ...In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved in two steps. The detailed analysis of computational results of a PDE with a single detonation tube and a PDE with five detonation tubes are given in this paper. Complex wave systems are observed inside and outside a PDE. For a PDE with 5 detonation tubes, there is a big bow shock produced from a number of little shocks near the open ends of tubes. A lot of vortexes interact with shocks and a large expansion wave propagates forward and backward with respect to the PDE in a semi-oval shape.展开更多
The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional ...The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given.展开更多
In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tid...In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tidal current is proposed. The essentials of the method are described, and its application is illustrated with an example. The results of the application show that the design tide levels calculated by the method are close to those determined by long-time measured tide level data, and its calculation precision is high, so it is feasible to use the method to determine the design tide levels in the areas.展开更多
This study clarifies the seepage characteristics of complex fractured pressure-sensitive reservoirs,and addresses a common technological problem,that is the alteration of the permeability degree of the reservoir bed(k...This study clarifies the seepage characteristics of complex fractured pressure-sensitive reservoirs,and addresses a common technological problem,that is the alteration of the permeability degree of the reservoir bed(known to be responsible for changes in the direction and velocity of fluid flows between wells).On the basis of a new pressuresensitive equation that considers the fracture directional pressure-sensitive effect,an oil-gas-water three-phase seepage mathematical model is introduced,which can be applied to pressure-sensitive,full-tensor permeability,ultralow-permeability reservoirs with fracture-induced anisotropy.Accordingly,numerical simulations are conducted to explore the seepage laws for ultralow-permeability reservoirs.The results show that element patterns have the highest recovery percentage under a fracture angle of 45°.Accounting for the pressure-sensitive effect produces a decrease in the recovery percentage.Several patterns are considered:inverted five-seven-and nine-spot patterns and a cross-row well pattern.Finally,two strategies are introduced to counteract the rotation of the direction of the principal permeability due to the fracture directional pressure-sensitive effect.展开更多
An adaptive EFG-FE coupling method is proposed and developed for the numerical simulation of lateral extrusion and forward-backward extrusion. Initially, the simulation has been implemented by using a conventional FE ...An adaptive EFG-FE coupling method is proposed and developed for the numerical simulation of lateral extrusion and forward-backward extrusion. Initially, the simulation has been implemented by using a conventional FE model. During the deforming process, mesh quality is checked at every incremental step. Distorted elements are automatically converted to EFG nodes, whereas, the less distorted elements are reserved. A new algorithm to generate EFG nodes and interface elements is presented. This method is capable of dealing with large deformation and has higher computational efficiency than using an EFG method wholly. Numerical results demonstrate that the adaptive EFG-FE coupling method has reasonable accuracy and is effective for local bulk metal forming such as extrusion processes.展开更多
For the case of a fractured reservoir surrounded by deformable rocks, the appropriateness and applicability of the two common methods of coupling of flow and deformation, explicit (coupled) and implicit (uncoupled) me...For the case of a fractured reservoir surrounded by deformable rocks, the appropriateness and applicability of the two common methods of coupling of flow and deformation, explicit (coupled) and implicit (uncoupled) methods are investigated. The explicit formulation is capable of modelling surrounding media;while the implicit coupling is unable to do so as deformation vector does not appear as a primary variable in the formulation. The governing differential equations and the finite element approximation of the governing equations for each of the methods are presented. Spatial discretization is achieved using the Galerkin method, and temporal discretisation using the finite difference technique. In the explicit model, coupling between flow and deformation is captured through volumetric strain compatibility amongst the phases within the system. In the implicit model, this is achieved by defining the pore space storativity as a function of the formation compressibility and the compressibility of the fluid phases within the pore space. The impact of rock deformability on early, intermediate and late time responses of fractured reservoir is investigated through several numerical examples. Salient features of each formulation are discussed and highlighted. It is shown that the implicit model is unable to capture the constraining effects of a non-yielding, surrounding rock, leading to incorrect projections of reservoir production irrespective of the history matching strategy adopted.展开更多
Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale res...Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale reservoirs in this paper. Considering petroleum geology, geochemistry, computational permeation fluid mechanics and computer technology, we state the models of permeation fluid mechanics and put forward a sequence of implicit upwind difference iteration schemes based on refined fractional steps of the upstream, which can compute the pressures, the saturation and the concentrations of different chemistry components. A type of software applicable in major industries has been completed and carried out in numerical analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic benefits and social benefits. This software gives many characters: spatial steps are taken as ten meters, the number of nodes is up to hundreds of thousands and simulation time period can be tens of years and the high-order accuracy can be promised in numerical data. Precise analysis is present for simplified models of this type and that provides a tool to solve the international famous problem.展开更多
To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental...To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones.展开更多
A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide int...A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.展开更多
The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic sheari...The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.展开更多
Taking the Kunlunshan Tunnel on Qinghai Tibet Railway as an engineering background, the curved wall-inverted arch lining of the tunnel was simplified into the straight wall-umbrella arch one, and the fractured rock ma...Taking the Kunlunshan Tunnel on Qinghai Tibet Railway as an engineering background, the curved wall-inverted arch lining of the tunnel was simplified into the straight wall-umbrella arch one, and the fractured rock mass with developed joints was treated as a discrete medium in the calculation. Using the UDEC code, the numerical simulations for thermo-mechanical coupling processes in the surrounding rock mass-supporting system were carried out aiming at the conditions of mean temperature, extreme highest temperature and extreme lowest temperature in one year. The distributions and changes of stresses, displacements, plastic zones, temperatures in the rock mass of near field, as well as the loading states in the model-building concrete and bolting were investigated and compared for these three computation cases. The results show that compared with the case of mean temperature, the ranges, where the temperatures of surrounding rock mass change obviously, are 6.0 m and 6.5 m, respectively, for the cases of extreme highest temperature and extreme lowest temperature; the displacements of tunnel are raised by 3.2 9.3 and 5.7 12.7 times, and the thicknesses of plastic zones reach 1.5 2.5 m and 2.0 4.5 m for case 2 and 3, respectively; the extreme temperatures of air have strong effects on the stress, deformation and failure states of supporting structure of tunnel in cold region, and the influence degree of extreme lowest temperature is the highest.展开更多
Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applie...Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.展开更多
A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime co...A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime conservation element and solution element(CE/SE)method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems.The performance parameters of diesel engine with speed of 2100 r/min are simulated.The simulated results are in accordance with the experimental data.The effect of increased power density on charging coefficient is analyzed using a validated model.The results show that the charging coefficient is slowly improved with the increase in intake pressure,and is obviously reduced with the increase in engine speed.展开更多
In this paper,based on the plastic forming large deformation theory and thermodynamic elastic-plastic FEM,the process of expanding and reducing tube was analyzed by using nonlinear finite element software MARC.The cou...In this paper,based on the plastic forming large deformation theory and thermodynamic elastic-plastic FEM,the process of expanding and reducing tube was analyzed by using nonlinear finite element software MARC.The coupled thermal-me- chanical models for the thermal-extrusion tube process were established,and the dynamic simulation to them was carried out.By the study on 3 D deformation regulation of the thermal-extrusion tube,the distribution of stress,strain and the curves between the force of extrusion and the distance were obtained.As a result,with only a small quantity of necessary experiments,the select of the schemes and parameters can conveniently be performed in the computers.So,not only large numbers of experiments can be avoided, but also trial-manufacture period is consumedly shortened and some costs may be saved.In addition,in order to validate our nu- merical calculation,an experiment of the tube made of 20 steel is presented in this paper.Good agreement is shown between mea- sured and predicted results of the theoretical analysis model.The study provides a scientific basis for parametric optimizations of the thermal extrusion expanding and reducing tube production equipment.At the same time,the method used in the present paper has important referential value for studying the similar thermal extrusion parts.展开更多
A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodo...A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed.展开更多
The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This m...The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.展开更多
基金the National Natural Science Foundation of China(No.51875062,No.52205336)the China Postdoctoral Science Foundation(No.2021M700567).
文摘The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.
基金supported by the National Natural Science Foundation of China(42293261)projects of the China Geological Survey(DD20230091,DD20189506,DD20211301)+1 种基金the 2024 Qinhuangdao City level Science and Technology Plan Self-Financing Project(Research on data processing methods for wave buoys in nearshore waters)the project of Hebei University of Environmental Engineering(GCZ202301)。
文摘The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.
文摘The paper presents the comparative study on numerical methods of Euler method,Improved Euler method and fourth-order Runge-Kutta method for solving the engineering problems and applications.The three proposed methods are quite efficient and practically well suited for solving the unknown engineering problems.This paper aims to enhance the teaching and learning quality of teachers and students for various levels.At each point of the interval,the value of y is calculated and compared with its exact value at that point.The next interesting point is the observation of error from those methods.Error in the value of y is the difference between calculated and exact value.A mathematical equation which relates various functions with its derivatives is known as a differential equation.It is a popular field of mathematics because of its application to real-world problems.To calculate the exact values,the approximate values and the errors,the numerical tool such as MATLAB is appropriate for observing the results.This paper mainly concentrates on identifying the method which provides more accurate results.Then the analytical results and calculates their corresponding error were compared in details.The minimum error directly reflected to realize the best method from different numerical methods.According to the analyses from those three approaches,we observed that only the error is nominal for the fourth-order Runge-Kutta method.
基金The project supported by the National Natural Science Foundation of China(59906005)the Teaching Research Award Program for Outstanding Young Teachers in High Education Institutions of MOE,China
文摘In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved in two steps. The detailed analysis of computational results of a PDE with a single detonation tube and a PDE with five detonation tubes are given in this paper. Complex wave systems are observed inside and outside a PDE. For a PDE with 5 detonation tubes, there is a big bow shock produced from a number of little shocks near the open ends of tubes. A lot of vortexes interact with shocks and a large expansion wave propagates forward and backward with respect to the PDE in a semi-oval shape.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41772286 and 42077247)the Fundamental Research Funds for the Central Universities, China
文摘The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given.
基金The National Key Fundamental Research and Development Program ("973" Program) of China under contract No. 2010CB429001
文摘In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tidal current is proposed. The essentials of the method are described, and its application is illustrated with an example. The results of the application show that the design tide levels calculated by the method are close to those determined by long-time measured tide level data, and its calculation precision is high, so it is feasible to use the method to determine the design tide levels in the areas.
基金This work is financially supported by the National Natural Science Foundation Project(No.51374222)National Major Project(No.2017ZX05032004-002)+2 种基金the National Key Basic Research&Development Program(No.2015CB250905)CNPC’s Major Scientific and Technological Project(No.2017E-0405)SINOPEC Major Scientific Research Project(No.P18049-1).
文摘This study clarifies the seepage characteristics of complex fractured pressure-sensitive reservoirs,and addresses a common technological problem,that is the alteration of the permeability degree of the reservoir bed(known to be responsible for changes in the direction and velocity of fluid flows between wells).On the basis of a new pressuresensitive equation that considers the fracture directional pressure-sensitive effect,an oil-gas-water three-phase seepage mathematical model is introduced,which can be applied to pressure-sensitive,full-tensor permeability,ultralow-permeability reservoirs with fracture-induced anisotropy.Accordingly,numerical simulations are conducted to explore the seepage laws for ultralow-permeability reservoirs.The results show that element patterns have the highest recovery percentage under a fracture angle of 45°.Accounting for the pressure-sensitive effect produces a decrease in the recovery percentage.Several patterns are considered:inverted five-seven-and nine-spot patterns and a cross-row well pattern.Finally,two strategies are introduced to counteract the rotation of the direction of the principal permeability due to the fracture directional pressure-sensitive effect.
基金National Natural Science Foundation of China(No.50575143)Specialized Research Fund for the Doctoral Program of HigherEducation (No.20040248005).
文摘An adaptive EFG-FE coupling method is proposed and developed for the numerical simulation of lateral extrusion and forward-backward extrusion. Initially, the simulation has been implemented by using a conventional FE model. During the deforming process, mesh quality is checked at every incremental step. Distorted elements are automatically converted to EFG nodes, whereas, the less distorted elements are reserved. A new algorithm to generate EFG nodes and interface elements is presented. This method is capable of dealing with large deformation and has higher computational efficiency than using an EFG method wholly. Numerical results demonstrate that the adaptive EFG-FE coupling method has reasonable accuracy and is effective for local bulk metal forming such as extrusion processes.
文摘For the case of a fractured reservoir surrounded by deformable rocks, the appropriateness and applicability of the two common methods of coupling of flow and deformation, explicit (coupled) and implicit (uncoupled) methods are investigated. The explicit formulation is capable of modelling surrounding media;while the implicit coupling is unable to do so as deformation vector does not appear as a primary variable in the formulation. The governing differential equations and the finite element approximation of the governing equations for each of the methods are presented. Spatial discretization is achieved using the Galerkin method, and temporal discretisation using the finite difference technique. In the explicit model, coupling between flow and deformation is captured through volumetric strain compatibility amongst the phases within the system. In the implicit model, this is achieved by defining the pore space storativity as a function of the formation compressibility and the compressibility of the fluid phases within the pore space. The impact of rock deformability on early, intermediate and late time responses of fractured reservoir is investigated through several numerical examples. Salient features of each formulation are discussed and highlighted. It is shown that the implicit model is unable to capture the constraining effects of a non-yielding, surrounding rock, leading to incorrect projections of reservoir production irrespective of the history matching strategy adopted.
文摘Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale reservoirs in this paper. Considering petroleum geology, geochemistry, computational permeation fluid mechanics and computer technology, we state the models of permeation fluid mechanics and put forward a sequence of implicit upwind difference iteration schemes based on refined fractional steps of the upstream, which can compute the pressures, the saturation and the concentrations of different chemistry components. A type of software applicable in major industries has been completed and carried out in numerical analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic benefits and social benefits. This software gives many characters: spatial steps are taken as ten meters, the number of nodes is up to hundreds of thousands and simulation time period can be tens of years and the high-order accuracy can be promised in numerical data. Precise analysis is present for simplified models of this type and that provides a tool to solve the international famous problem.
基金Project (50771041) supported by the National Natural Science Foundation of ChinaProject (05-0350) supported by the New Century Excellent Talents in University, China
文摘To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones.
基金supported by the National Natural Science Foundation of China (51579163 and 51639007)the National Key R&D Program of China (2017YFC1502504 and 2016YFC0402304)
文摘A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.
基金supported by Laboratory Directed Research and Development(LDRD)funding from Berkeley Labsupported by Open Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017004)。
文摘The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProjects(51079145,51379201) supported by the National Natural Science Foundation of China
文摘Taking the Kunlunshan Tunnel on Qinghai Tibet Railway as an engineering background, the curved wall-inverted arch lining of the tunnel was simplified into the straight wall-umbrella arch one, and the fractured rock mass with developed joints was treated as a discrete medium in the calculation. Using the UDEC code, the numerical simulations for thermo-mechanical coupling processes in the surrounding rock mass-supporting system were carried out aiming at the conditions of mean temperature, extreme highest temperature and extreme lowest temperature in one year. The distributions and changes of stresses, displacements, plastic zones, temperatures in the rock mass of near field, as well as the loading states in the model-building concrete and bolting were investigated and compared for these three computation cases. The results show that compared with the case of mean temperature, the ranges, where the temperatures of surrounding rock mass change obviously, are 6.0 m and 6.5 m, respectively, for the cases of extreme highest temperature and extreme lowest temperature; the displacements of tunnel are raised by 3.2 9.3 and 5.7 12.7 times, and the thicknesses of plastic zones reach 1.5 2.5 m and 2.0 4.5 m for case 2 and 3, respectively; the extreme temperatures of air have strong effects on the stress, deformation and failure states of supporting structure of tunnel in cold region, and the influence degree of extreme lowest temperature is the highest.
文摘Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.
文摘A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime conservation element and solution element(CE/SE)method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems.The performance parameters of diesel engine with speed of 2100 r/min are simulated.The simulated results are in accordance with the experimental data.The effect of increased power density on charging coefficient is analyzed using a validated model.The results show that the charging coefficient is slowly improved with the increase in intake pressure,and is obviously reduced with the increase in engine speed.
文摘In this paper,based on the plastic forming large deformation theory and thermodynamic elastic-plastic FEM,the process of expanding and reducing tube was analyzed by using nonlinear finite element software MARC.The coupled thermal-me- chanical models for the thermal-extrusion tube process were established,and the dynamic simulation to them was carried out.By the study on 3 D deformation regulation of the thermal-extrusion tube,the distribution of stress,strain and the curves between the force of extrusion and the distance were obtained.As a result,with only a small quantity of necessary experiments,the select of the schemes and parameters can conveniently be performed in the computers.So,not only large numbers of experiments can be avoided, but also trial-manufacture period is consumedly shortened and some costs may be saved.In addition,in order to validate our nu- merical calculation,an experiment of the tube made of 20 steel is presented in this paper.Good agreement is shown between mea- sured and predicted results of the theoretical analysis model.The study provides a scientific basis for parametric optimizations of the thermal extrusion expanding and reducing tube production equipment.At the same time,the method used in the present paper has important referential value for studying the similar thermal extrusion parts.
文摘A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed.
文摘The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.