The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reli...The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.展开更多
Based on the empirical electron surface model (EESM),the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold,and the surface energy was calculated further.Calculat...Based on the empirical electron surface model (EESM),the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold,and the surface energy was calculated further.Calculation results show that CEDDB has a great influence on the surface energy of various index surfaces and the anisotropy of the surface.The calculated surface energy is in agreement with experimental and other theoretical values.The calculated surface energy of the close-packed (111) surface has the lowest surface energy,which agrees with the theoretical prediction.Also,it is found that the spatial distribution of covalent bonds has a great influence on the surface energy of various index surfaces.Therefore,CEDDB should be a suitable parameter to describe and quantify the dangling bonds and surface energy of various crystal surfaces.展开更多
文摘The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.
基金supported by the Beijing Natural Science Foundation,China (No.2072014)the Ph.D. Program Foundation of the Ministry of Education of China (No.200800100006)
文摘Based on the empirical electron surface model (EESM),the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold,and the surface energy was calculated further.Calculation results show that CEDDB has a great influence on the surface energy of various index surfaces and the anisotropy of the surface.The calculated surface energy is in agreement with experimental and other theoretical values.The calculated surface energy of the close-packed (111) surface has the lowest surface energy,which agrees with the theoretical prediction.Also,it is found that the spatial distribution of covalent bonds has a great influence on the surface energy of various index surfaces.Therefore,CEDDB should be a suitable parameter to describe and quantify the dangling bonds and surface energy of various crystal surfaces.