The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertificat...The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas.展开更多
As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed...As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.展开更多
Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality an...Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.展开更多
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and ...Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery(Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.展开更多
基金supported by grants from the National Nature Science Foundation of China(31025007)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX1-YW-08-02)
文摘The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas.
基金supported by the National Basic Research Program of China (2007CB407207)National Natural Science Foundation of China (30800888)
文摘As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.
基金supported by the National Key Basic Research Program of China (973Program, 2015CB452706)the youth talent team program of the Institute of Mountain Hazards and Environment, CAS (SDSQB-2015-01)+1 种基金the National Natural Science Foundation of China (41401198 and 41571527)the Youth Innovation Promotion Association, CAS(No. 2016332)
文摘Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.
基金akistan Space and Upper Atmospheric Research Commission(SUPARCO),for the provision of SPOT satellite imagesnational center of excellence in Geology(NCEG)+1 种基金University of Peshawar and Department of ForestryShaheed Benazir Bhutto University,Sheringal
文摘Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery(Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.