To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second ...To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization.展开更多
[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Metho...[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco.展开更多
The soil temperature(ST)is closely related to the surface air temperature(AT),but their coupling may be affected by other factors.In this study,significant effects of the AT on the underlying ST were found,and the tim...The soil temperature(ST)is closely related to the surface air temperature(AT),but their coupling may be affected by other factors.In this study,significant effects of the AT on the underlying ST were found,and the time taken to propagate downward to 320 cm can be up to 10 months.Besides the AT,the ST is also affected by memory effects-namely,its prior thermal conditions.At deeper depth(i.e.,320 cm),the effects of the AT from a particular season may be exceeded by the soil memory effects from the last season.At shallower layers(i.e.,<80 cm),the effects of the AT may be blocked by the snow cover,resulting in a poorly synchronous correlation between the AT and the ST.In northeastern China,this snow cover blockage mainly occurs in winter and then vanishes in the subsequent spring.Due to the thermal insulation effect of the snow cover,the winter ST at layers above 80 cm in northeastern China were found to continue to increase even during the recent global warming hiatus period.These findings may be instructive for better understanding ST variations,as well as land−atmosphere interactions.展开更多
In Northwest China,potatoes are cultivated on double-rows of each ridge which is mulched with plastic film,and the film is covered with some of soil.While effective in retaining soil moisture,this technique can render...In Northwest China,potatoes are cultivated on double-rows of each ridge which is mulched with plastic film,and the film is covered with some of soil.While effective in retaining soil moisture,this technique can render the potato seedlings prone to be burned if they are not released from the plastic film in time.In this study,the model of convective heat transfer of potato ridge under solar radiation and atmospheric radiation is established by the Fluent software.The processes of the heat transfer of potato ridge was simulated for a certain day,and the temperature distribution in the potato ridge was monitored over time.The temperature distribution of soil in the growth layer of potato plants was analyzed under different thickness and widths of the covering soil on the film.The results showed that with the increase of covering soil thickness and width,the time for soil at different depth to reach the peak-temperature was delayed,and the daily temperature change of soil where the different depths layer of potato plants growth was reduced.At that time,a binary regression equation of offset temperature was constructed by using the Response Surface Method.The best parameter combination for covering soil on the plastic film is a thickness of 50 mm and a width of 280 mm in the cold and arid areas of Northwest China.However,the offset temperature(PT)first decreased and then almost remained unchanged with the increase of covering soil thickness.Considering the operational efficiency and power consumption of soil covering devices in the field,the unchanged width of the covering soil is 200 mm.The field experiments have shown that a 50 mm thick of soil covering is beneficial for the growth of potato plants and a 200 mm width of soil covering is beneficial for the growth of potato plants.The height of potato plants was 21 cm,and the natural emergence rate of potatoes was 95.8%on June 9,2024.The environment of soil covered could provide theoretical support for the mechanized planting of potatoes.展开更多
In order to further improve the working performance and efficiency of mechanized tillage operation of a full-film double-ditch seedbed,under the working conditions of different parameters of the spiral push-type soil ...In order to further improve the working performance and efficiency of mechanized tillage operation of a full-film double-ditch seedbed,under the working conditions of different parameters of the spiral push-type soil covering device with double-width filming,the dynamic soil covering characteristics and soil covering uniformity of the device were analyzed,the collaborative and interactive coupling mechanism of the horizontal pushing process of the mulching soil and horizontally two-way spiral soil transmission device were revealed,and the main reasons for the influence of different soil covering belts on the change of soil particle number distribution were analyzed.Based on the full-film double-ditch mode with double-width filming,the mechanized soil covering path was optimized.In order to further reduce the disturbance on mulching soil by two-way spiral pushing,a kind of parallel shunt type soil covering device with double-width filming was designed,then a discrete element method was adopted to make simulation analysis and optimize the parallel shunt type soil covering device with double-width filming.Field verification tests showed that after the operation of the full-film double-ditch combined machine with double-width filming and soil covering installed with the parallel shunt type soil covering device,the qualified rate of the film edge soil covering width was 96.1%,an increase of 1.6%compared to that before optimization;the qualified rate of soil covering width at the center of the big ridge was 93.5%,an increase of 1.9%compared to that before optimization;the qualified rate of the soil covering thickness was 97.7%,an increase of 0.2%compared to that before optimization.The test indicators reached the requirements of relevant national and industrial standards,showing that the test results met the design requirements,and the working conditions of verification tests were consistent with the simulation results.展开更多
Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation ...Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation cover derived from satellite imagery to estimate soil surface wetness (triangle method) in Allahabad district. The pixel distributions create triangular shapes because the range of surface radiant temperature decreases as the amount of vegetation cover increases and sufficient number of pixels exists. A very weak correlation is found between the simulated soil surface wetness and ground measured soil moisture at deeper soil layers (R<sup>2</sup> < 0.15) on all the dates under investigation. This is because the drying rates at the surface discontinue to be linearly correlated to that at lower levels (depths). The standing water pixels distort the shape of the triangle especially at lower left edge of the triangle. This distortion is removable. The spatial and temporal inhomogeneity of soil surface wetness is examined.展开更多
Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and er...Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain.The pine stands of these forests were subjected to both prescribed fire and wildfire,and,in the latter case,to post-fire treatment with mulching.Moreover,simple multi-regression models are proposed to predict runoff and erosion in the experi-mental conditions.In the case of the prescribed burning,the fire had a limited impact on runoff and erosion compared to the unburned areas,due to the limited changes in soil parameters.In contrast,the wildfire increased many-fold the runoff and erosion rates,but the mulching reduced the hydrological response of the burned soils,particularly for the first two-three rainfalls after the fire.The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover,soil water repellency,and ash left by fire;the changes in water infiltration played a minor role on runoff and erosion.The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients.However,these models were less reliable for predictions of the mean erosion rates.The predictions of erosion after wildfire and mulching were excellent,while those of runoff were not satisfactory(except for the mean values).These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side.Moreover,the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.展开更多
Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution...Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution (PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios (0%, 15%, 30%, 45%, 60% and 90%), slope lengths (2 m, 4 m), fertilizer treatments (unfertilized control (CK), compound N-P-K fertilizer (CF), and organic fertilizer (OF)) on SOC loss and the SOC enrichment ratio (ERsoc) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more clay- sized particles (〈2 μm) and silt-sized particles (2-50μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERsoc 〉 1. ERsoc was positively correlated with ERclay (〈2 pro) (R^2 = o.68) and ERie at (2-20 μm) (R2 = 0.63), and from all the size particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized partieles (〈50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized part-ides and fine silt-sized particles, thus we eonelude that as the eroded sediment partieles became finer, more SOC was absorbed, resulting in more severe SOC loss.展开更多
基金supported by China Geological Survey(DD20230554,DD20230089)the Strategic Priority Research Program of the Chinese Academy of Science(XDA28020302)the funding project of Northeast Geological S&T Innovation Center of China Geological Survey(QCJJ2022-40).
文摘To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization.
基金Supported by Project of Guangdong Zhongyan Industry Limited Liability Company[YYG15JO-QK(2011)-004]~~
文摘[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco.
基金This work was sponsored by the National Key R&D Program of China(Grant No.2016YFA0600404)the National Natural Science Foundation of China(Grant Nos.41530532 and 41675088)N.Y.also thanks the support from the Chinese Academy of Sciences Pioneer Hundred Talents Program.
文摘The soil temperature(ST)is closely related to the surface air temperature(AT),but their coupling may be affected by other factors.In this study,significant effects of the AT on the underlying ST were found,and the time taken to propagate downward to 320 cm can be up to 10 months.Besides the AT,the ST is also affected by memory effects-namely,its prior thermal conditions.At deeper depth(i.e.,320 cm),the effects of the AT from a particular season may be exceeded by the soil memory effects from the last season.At shallower layers(i.e.,<80 cm),the effects of the AT may be blocked by the snow cover,resulting in a poorly synchronous correlation between the AT and the ST.In northeastern China,this snow cover blockage mainly occurs in winter and then vanishes in the subsequent spring.Due to the thermal insulation effect of the snow cover,the winter ST at layers above 80 cm in northeastern China were found to continue to increase even during the recent global warming hiatus period.These findings may be instructive for better understanding ST variations,as well as land−atmosphere interactions.
基金supported by the National Natural Science Foundation of China grant NSFC(Grant No.52165028)Gansu Provincial University Industry Support Plan(Grant No.2022CYZC-42)the Key Scientific and Technological Program of Gansu Province(Grant No.22ZD6NA046).
文摘In Northwest China,potatoes are cultivated on double-rows of each ridge which is mulched with plastic film,and the film is covered with some of soil.While effective in retaining soil moisture,this technique can render the potato seedlings prone to be burned if they are not released from the plastic film in time.In this study,the model of convective heat transfer of potato ridge under solar radiation and atmospheric radiation is established by the Fluent software.The processes of the heat transfer of potato ridge was simulated for a certain day,and the temperature distribution in the potato ridge was monitored over time.The temperature distribution of soil in the growth layer of potato plants was analyzed under different thickness and widths of the covering soil on the film.The results showed that with the increase of covering soil thickness and width,the time for soil at different depth to reach the peak-temperature was delayed,and the daily temperature change of soil where the different depths layer of potato plants growth was reduced.At that time,a binary regression equation of offset temperature was constructed by using the Response Surface Method.The best parameter combination for covering soil on the plastic film is a thickness of 50 mm and a width of 280 mm in the cold and arid areas of Northwest China.However,the offset temperature(PT)first decreased and then almost remained unchanged with the increase of covering soil thickness.Considering the operational efficiency and power consumption of soil covering devices in the field,the unchanged width of the covering soil is 200 mm.The field experiments have shown that a 50 mm thick of soil covering is beneficial for the growth of potato plants and a 200 mm width of soil covering is beneficial for the growth of potato plants.The height of potato plants was 21 cm,and the natural emergence rate of potatoes was 95.8%on June 9,2024.The environment of soil covered could provide theoretical support for the mechanized planting of potatoes.
基金the National Natural Science Foundation of China(Grant No.52065005,No.51775115)Outstanding Youth Foundation of Gansu Province(Grant No.20JR10RA560)+1 种基金Natural Science Foundation of Gansu Province(Grant No.20JR5RA029)Research Program Sponsored by Gansu Provincial Key Laboratory of Aridland Crop Science,Gansu Agricultural University(Grant No.GSCS-2020-01).
文摘In order to further improve the working performance and efficiency of mechanized tillage operation of a full-film double-ditch seedbed,under the working conditions of different parameters of the spiral push-type soil covering device with double-width filming,the dynamic soil covering characteristics and soil covering uniformity of the device were analyzed,the collaborative and interactive coupling mechanism of the horizontal pushing process of the mulching soil and horizontally two-way spiral soil transmission device were revealed,and the main reasons for the influence of different soil covering belts on the change of soil particle number distribution were analyzed.Based on the full-film double-ditch mode with double-width filming,the mechanized soil covering path was optimized.In order to further reduce the disturbance on mulching soil by two-way spiral pushing,a kind of parallel shunt type soil covering device with double-width filming was designed,then a discrete element method was adopted to make simulation analysis and optimize the parallel shunt type soil covering device with double-width filming.Field verification tests showed that after the operation of the full-film double-ditch combined machine with double-width filming and soil covering installed with the parallel shunt type soil covering device,the qualified rate of the film edge soil covering width was 96.1%,an increase of 1.6%compared to that before optimization;the qualified rate of soil covering width at the center of the big ridge was 93.5%,an increase of 1.9%compared to that before optimization;the qualified rate of the soil covering thickness was 97.7%,an increase of 0.2%compared to that before optimization.The test indicators reached the requirements of relevant national and industrial standards,showing that the test results met the design requirements,and the working conditions of verification tests were consistent with the simulation results.
文摘Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation cover derived from satellite imagery to estimate soil surface wetness (triangle method) in Allahabad district. The pixel distributions create triangular shapes because the range of surface radiant temperature decreases as the amount of vegetation cover increases and sufficient number of pixels exists. A very weak correlation is found between the simulated soil surface wetness and ground measured soil moisture at deeper soil layers (R<sup>2</sup> < 0.15) on all the dates under investigation. This is because the drying rates at the surface discontinue to be linearly correlated to that at lower levels (depths). The standing water pixels distort the shape of the triangle especially at lower left edge of the triangle. This distortion is removable. The spatial and temporal inhomogeneity of soil surface wetness is examined.
基金the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science-Wuhan University(2019HLG02).
文摘Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain.The pine stands of these forests were subjected to both prescribed fire and wildfire,and,in the latter case,to post-fire treatment with mulching.Moreover,simple multi-regression models are proposed to predict runoff and erosion in the experi-mental conditions.In the case of the prescribed burning,the fire had a limited impact on runoff and erosion compared to the unburned areas,due to the limited changes in soil parameters.In contrast,the wildfire increased many-fold the runoff and erosion rates,but the mulching reduced the hydrological response of the burned soils,particularly for the first two-three rainfalls after the fire.The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover,soil water repellency,and ash left by fire;the changes in water infiltration played a minor role on runoff and erosion.The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients.However,these models were less reliable for predictions of the mean erosion rates.The predictions of erosion after wildfire and mulching were excellent,while those of runoff were not satisfactory(except for the mean values).These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side.Moreover,the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.
基金funded by Water and Soil Conservation Monitoring Technology Innovation Team and Construction of China(Grant No.2009F20022)National Natural Science Foundation of China(Grant No.41471221)
文摘Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution (PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios (0%, 15%, 30%, 45%, 60% and 90%), slope lengths (2 m, 4 m), fertilizer treatments (unfertilized control (CK), compound N-P-K fertilizer (CF), and organic fertilizer (OF)) on SOC loss and the SOC enrichment ratio (ERsoc) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more clay- sized particles (〈2 μm) and silt-sized particles (2-50μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERsoc 〉 1. ERsoc was positively correlated with ERclay (〈2 pro) (R^2 = o.68) and ERie at (2-20 μm) (R2 = 0.63), and from all the size particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized partieles (〈50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized part-ides and fine silt-sized particles, thus we eonelude that as the eroded sediment partieles became finer, more SOC was absorbed, resulting in more severe SOC loss.