期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
1
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiB_2-B_4C CERAMIC COMPOSITES
2
作者 LIANG Minxian XIA Fei Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第12期397-402,共6页
The microstructure and mechanical properties of TiB_2 /B_4C composites have been investi- gated.It was found that both the strength and hardness for TiB_2 greatly increase with the ad- dition of 20 to 30 wt-% B_4C,and... The microstructure and mechanical properties of TiB_2 /B_4C composites have been investi- gated.It was found that both the strength and hardness for TiB_2 greatly increase with the ad- dition of 20 to 30 wt-% B_4C,and the fracture toughness K_(IC) value remaines on the original high level.The flexure strength,Vicker's hardness and fracture toughness are 782 MPa,26.2 GPa and 7.2 MPam^(1/2),respectively,for the TiB_2-30 wt-% B_4C composite,compared to 450 MPa,21 GPa and 7.0 MPam^(1/2) for monolithic TiB_2.The toughening and strengthening mechanisms,have also been discussed. 展开更多
关键词 TiB_2-B_4C composites crack tip deflection crack tip branching
下载PDF
Effects of metallic microstructures on fatigue fracture of Q345 steel
3
作者 Han-qing Liu Chun-ming Wang +3 位作者 Hong Zhang Zhi-yong Huang Qing-yuan Wang Qiang Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第6期702-709,共8页
Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loa... Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loading axis were verified to be the most potential sites to fabricate the microcracks caused by the high strain gradient. The initial crack extension inside ferrite grain was driven by shear stress in model II along the direction with a 45° angle to the loading axis. Banded pearlite colony and the high-angle grain boundaries were considered as the dominant factors that promote the fatigue resistance of the material through arousing crack deflection in short crack propagation range and crack branching in long crack propagation range to reduce the crack propagation driving force in the crack tip. P-S-N curves were used to quantify the dispersion of fatigue lifetimes and evaluate the effect of elevated volume content of pearlite colony on the fatigue performance of the material. 展开更多
关键词 Ferrite-pearlite steel High-cycle fatigue crack propagation crack branching High-angle grain boundary P-S-N curve
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部