This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str...This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite.展开更多
To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response a...To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes.展开更多
Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex...Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interracial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.展开更多
Two types of solutions(Zn SO4, Mg SO4) were selected to study the influence of mineral admixtures on the electro-deposition healing effect of concrete cracks. Four parameters(i e, rates of weight gain, surface coat...Two types of solutions(Zn SO4, Mg SO4) were selected to study the influence of mineral admixtures on the electro-deposition healing effect of concrete cracks. Four parameters(i e, rates of weight gain, surface coating, crack closure and crack filling depth) were measured. The mineral composition of electro-deposits in the cracks was analyzed. The study shows that the healing effect of mortar specimens with 10% fly ash is the worst, while the healing effect of mortar specimens with 20% fly ash is better than that of the specimens without fly ash. The rates of weight gain, surface coating, crack closure and crack filling depth decrease with increasing content of the ground granulated blast-furnace slag(GGBS). The mineral admixtures have no influence on the composition of deposits.展开更多
The crack tip strain gauge method in the compliance technique was used to determine the opening load of notched crack of axle steel,and the nonlinear finite element ADINA program, to which the cyclic stress-strain cur...The crack tip strain gauge method in the compliance technique was used to determine the opening load of notched crack of axle steel,and the nonlinear finite element ADINA program, to which the cyclic stress-strain curve of axle steel was applied,was used to analyze the stress-strain field ahead of the crack tip and the opening load of notched crack.The results of both the compliance technique and the numerical method were in good agreement.In this pa- per,the concept of the sensitive point is proposed and the key to the determination of the crack opening load in the experiment is to place a strain gauge at sensitive point.It is certified by both experimental and numerical methods that the sensitive point has the best linear relation- ship character and the value of strain is much greater.展开更多
The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain grad...The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.展开更多
The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing m...The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.展开更多
In the present paper, the effective elastic moduli of an inhomogeneous medium with cracks are derived and obtained by taking into account its microstructural properties which involve the shape, size and distribution o...In the present paper, the effective elastic moduli of an inhomogeneous medium with cracks are derived and obtained by taking into account its microstructural properties which involve the shape, size and distribution of cracks and the interaction between cracks. Numerical results for the periodic microstructure of different dimensions are presented. From the results obtained, it can be found that the distribution of cracks has a significant effect on the effective elastic moduli of the material.展开更多
High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar ...High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar caps-web attachments, more cracks are initiated and grow from the edges of the fastener holes than from features like fillets radii and corners or from large access holes. The main causes of this cracking are the stress concentrations introduced by the fastener holes and by the threaded fasteners themselves, with the most common damage site being at the edge of the fastener holes. Intuitively, it is easy to visualize that after the crack initiation, during the growth stages, some of the load transferred initially by the fastener at the cracked hole will decrease, and it will be shed to the adjacent fasteners that will carry higher loads than in uncracked condition. Using currently available computer software, the method presented in this paper provides a relatively quick and quantitatively defined solution to account for the effects of crack length on the fastener loads transfer, and on the far field and bypass loads at each fastener adjacent to the crack. At each location, these variations are determined from the 3-dimensional distribution of stresses in the joint, and accounting for secondary bending effects and fastener tilt. Two cases of a typical skins lap splice with eight fasteners in a two rows configuration loaded in tension are presented and discussed, one representative for wing or fuselage skins configurations, and the second case representative for cost effective laboratory testing. Each case presents five cracking scenarios, with the cracks growing from approx. 0.03 inch to either the free edge, next hole or both simultaneously.展开更多
The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks. Utilizing the complex functio...The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks. Utilizing the complex function method, the closed-form solutions of the stress fields in the matrix and the inclusion region are derived. The stress intensity factor, the image force, as well as the critical loads for dislocation emission are discussed in detail. The results show that the nano inclusion not only enhances the shielding effect exerted by the dislocation, but also provides a shielding effect itself. Moreover, dislocations may be trapped in the nano inclusion even if the matrix is softer than the inclusion. This helps the dislocation shield crack, and reduces the dislocation density within the matrix.展开更多
The physical properties and microstructure of SUF are investigated to develop a highly effective cement matrix crack-patching material for concrete cracks. The SEM and XRD determination of hardened SUF shows that the ...The physical properties and microstructure of SUF are investigated to develop a highly effective cement matrix crack-patching material for concrete cracks. The SEM and XRD determination of hardened SUF shows that the microstructure of SUF is dense and compact with a lot of C-S-H gels and ettringite. Also, the mechanism of shrinkage compensating is discussed.展开更多
To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The ...To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The rate of weight gain, rate of surface coating, rate of crack closure and crack filling depth were measured. Scanning electron microscopy was used to assess the morphology of the electrodeposits, and energy dispersive spectroscopy was used to analyze the mineral composition of the electrodeposits in the cracks. The experimental results demonstrate that, among five different pulse parameters, when T_(on)/T_(off)=0.8 ms/0.8 ms, the healing effect of electro-deposition is the best. The pulse mode hardly affects the mineral composition of the electrodeposits but changes the micromorphology. In addition, for both ZnSO_4 and MgSO_4 solutions, when T_(on)/T_(off)=0.8 ms/0.8 ms, the crystal structure of the electrodeposits is the most uniform and the densest.展开更多
A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e....A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.展开更多
This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion...This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion cracking sus-ceptibility measurements were carried out in 52 Wt% ammonium nitrate solutions at 368° K and various pH values ranging from 0.77 to 9.64. Constant load stress corrosion test at 90% yield stress was conducted. Tested specimens were prepared and examined using the scanning electron microscope (SEM). The potentiodynamic polarization curves for different pH values again emphasized the validity of the gravimetric measurements and hence the mechanism of cracking was attributed to the stress that assisted the dissolution process.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52074269).
文摘This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite.
基金the National Science-technology Support Projects for the 13th Five-year Plan(2017YFC0805703-4).
文摘To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10872065 and 50801025)
文摘Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interracial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.
基金Funded by the National Natural Science Foundation of China(Nos.51479051,51278167)the Natural Science Foundation of Jiangsu Province(No.BK20131374)the Research and Innovation Project for College Graduates of Jiangsu Province(No.CXZZ12_0238)
文摘Two types of solutions(Zn SO4, Mg SO4) were selected to study the influence of mineral admixtures on the electro-deposition healing effect of concrete cracks. Four parameters(i e, rates of weight gain, surface coating, crack closure and crack filling depth) were measured. The mineral composition of electro-deposits in the cracks was analyzed. The study shows that the healing effect of mortar specimens with 10% fly ash is the worst, while the healing effect of mortar specimens with 20% fly ash is better than that of the specimens without fly ash. The rates of weight gain, surface coating, crack closure and crack filling depth decrease with increasing content of the ground granulated blast-furnace slag(GGBS). The mineral admixtures have no influence on the composition of deposits.
文摘The crack tip strain gauge method in the compliance technique was used to determine the opening load of notched crack of axle steel,and the nonlinear finite element ADINA program, to which the cyclic stress-strain curve of axle steel was applied,was used to analyze the stress-strain field ahead of the crack tip and the opening load of notched crack.The results of both the compliance technique and the numerical method were in good agreement.In this pa- per,the concept of the sensitive point is proposed and the key to the determination of the crack opening load in the experiment is to place a strain gauge at sensitive point.It is certified by both experimental and numerical methods that the sensitive point has the best linear relation- ship character and the value of strain is much greater.
文摘The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
基金Funded by the Key Technologies R&D Program from Department of Science and Technology Hubei Province(200410G0121) "973" Pro-gram(001CB610704-3) from Ministry of Science and Technology of China
文摘The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.
基金The project supported by the National Education Committee for Doctor
文摘In the present paper, the effective elastic moduli of an inhomogeneous medium with cracks are derived and obtained by taking into account its microstructural properties which involve the shape, size and distribution of cracks and the interaction between cracks. Numerical results for the periodic microstructure of different dimensions are presented. From the results obtained, it can be found that the distribution of cracks has a significant effect on the effective elastic moduli of the material.
文摘High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar caps-web attachments, more cracks are initiated and grow from the edges of the fastener holes than from features like fillets radii and corners or from large access holes. The main causes of this cracking are the stress concentrations introduced by the fastener holes and by the threaded fasteners themselves, with the most common damage site being at the edge of the fastener holes. Intuitively, it is easy to visualize that after the crack initiation, during the growth stages, some of the load transferred initially by the fastener at the cracked hole will decrease, and it will be shed to the adjacent fasteners that will carry higher loads than in uncracked condition. Using currently available computer software, the method presented in this paper provides a relatively quick and quantitatively defined solution to account for the effects of crack length on the fastener loads transfer, and on the far field and bypass loads at each fastener adjacent to the crack. At each location, these variations are determined from the 3-dimensional distribution of stresses in the joint, and accounting for secondary bending effects and fastener tilt. Two cases of a typical skins lap splice with eight fasteners in a two rows configuration loaded in tension are presented and discussed, one representative for wing or fuselage skins configurations, and the second case representative for cost effective laboratory testing. Each case presents five cracking scenarios, with the cracks growing from approx. 0.03 inch to either the free edge, next hole or both simultaneously.
基金Project supported by the Postdoctoral Research Funds of Jiangsu Province, China (Grant No. 1002008B)the China Postdoctoral Science Foundation (Grant No. 20110491416)
文摘The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks. Utilizing the complex function method, the closed-form solutions of the stress fields in the matrix and the inclusion region are derived. The stress intensity factor, the image force, as well as the critical loads for dislocation emission are discussed in detail. The results show that the nano inclusion not only enhances the shielding effect exerted by the dislocation, but also provides a shielding effect itself. Moreover, dislocations may be trapped in the nano inclusion even if the matrix is softer than the inclusion. This helps the dislocation shield crack, and reduces the dislocation density within the matrix.
基金Funded by Railway Ministry Scientific Research Item
文摘The physical properties and microstructure of SUF are investigated to develop a highly effective cement matrix crack-patching material for concrete cracks. The SEM and XRD determination of hardened SUF shows that the microstructure of SUF is dense and compact with a lot of C-S-H gels and ettringite. Also, the mechanism of shrinkage compensating is discussed.
基金the National Natural Science Foundation(Nos.51479051,51778209,51609075,and 51508158)the Fundamental Research Funds for the Central Universities(2016B08414)the National Key R&D Program of China(Nos.2016YFC0401610 and2016YFC0401804)
文摘To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The rate of weight gain, rate of surface coating, rate of crack closure and crack filling depth were measured. Scanning electron microscopy was used to assess the morphology of the electrodeposits, and energy dispersive spectroscopy was used to analyze the mineral composition of the electrodeposits in the cracks. The experimental results demonstrate that, among five different pulse parameters, when T_(on)/T_(off)=0.8 ms/0.8 ms, the healing effect of electro-deposition is the best. The pulse mode hardly affects the mineral composition of the electrodeposits but changes the micromorphology. In addition, for both ZnSO_4 and MgSO_4 solutions, when T_(on)/T_(off)=0.8 ms/0.8 ms, the crystal structure of the electrodeposits is the most uniform and the densest.
基金the National Natural Science Foundation of China (No.19704100)Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20)CASK.C.Wong Post-doctoral Research Award Fund and the Post Doctoral Science Fund of China.
文摘A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.
文摘This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion cracking sus-ceptibility measurements were carried out in 52 Wt% ammonium nitrate solutions at 368° K and various pH values ranging from 0.77 to 9.64. Constant load stress corrosion test at 90% yield stress was conducted. Tested specimens were prepared and examined using the scanning electron microscope (SEM). The potentiodynamic polarization curves for different pH values again emphasized the validity of the gravimetric measurements and hence the mechanism of cracking was attributed to the stress that assisted the dissolution process.