期刊文献+
共找到3,730篇文章
< 1 2 187 >
每页显示 20 50 100
Effects of alloy elements on microstructure and crack resistance of Fe-C-Cr weld surfacing layer 被引量:6
1
作者 孙大谦 王文权 +1 位作者 宣兆志 任振安 《China Welding》 EI CAS 2003年第2期92-97,共6页
Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matri... Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo. 展开更多
关键词 weld surfacing layer alloy element crack resistance
下载PDF
Cracking Propagation of Hardening Concrete Based on the Extended Finite Element Method 被引量:2
2
作者 朱振泱 CHEN Weimin ZHANG Guoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1132-1139,共8页
Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete cr... Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete crack propagation under a constant hydration and hardening condition during the construction period, and a corresponding programming code was developed. The experimental investigation shows that initial crack propagation caused by self-deformation loads can be analyzed by this program. This improved algorithm was a preliminary application of the XFEM to the problem of the concrete self-deformation cracking during the hydration and hardening period. However, room for improvement exists for this algorithm in terms of matching calculation programs with mass concrete temperature fields containing cooling pipes and the influence of creep or damage on crack propagation. 展开更多
关键词 concrete crack self-deformation loads extended finite element method
下载PDF
Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses 被引量:10
3
作者 陈赵江 郑江 +2 位作者 张淑仪 米小兵 郑凯 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期678-690,共13页
A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by hig... A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail. Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained. 展开更多
关键词 ultrasonic infrared imaging frictional heating of cracks acoustic chaos finite element method
下载PDF
Cracking analysis of fracture mechanics by the finite element method of lines(FEMOL) 被引量:2
4
作者 Shaowei Hu Brian Moran 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期495-502,共8页
The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to... The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems. 展开更多
关键词 The finite element method of lines (FEMOL) .cracking analysis . Application
下载PDF
Second Generation Wavelet Finite Element and Rotor Cracks Quantitative Identification Method 被引量:3
5
作者 CHEN Xuefeng LI Bing HE Yuming HE Zhengjia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期195-199,共5页
The presence of cracks in the rotor is one of the most dangerous and critical defects for rotating machinery. Defect of fatigue cracks may lead to long out-of-service periods, heavy damages of machines and severe econ... The presence of cracks in the rotor is one of the most dangerous and critical defects for rotating machinery. Defect of fatigue cracks may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. With the method of finite element, vibration behavior of cracked rotors and crack detection was received considerable attention in the academic and engineering field. Various researchers studied the response of a cracked rotor and most of them are focused on the crack detection based on vibration behavior of cracked rotors. But it is often difficult to identify the crack parameters quantitatively. Second generation wavelets (SGW) finite element has good ability in modal analysis for singularity problems like a cracked rotor. Based on the fact that the feature of SGW could be designed depending on applications, a multiresolution finite element method is presented. The new model of SGW beam element is constructed. The first three natural frequencies of the rotor with different crack location and size were solved with SGW beam elements, and the database for crack diagnosis is obtained. The first three metrical natural frequencies are employed as inputs of the database and the intersection of the three frequencies contour lines predicted the normalized crack location and size. With the Bently RK4 rotor test rig, rotors with different crack location and size are tested and diagnosed. The experimental results denote the cracks quantitative identification method has higher identification precision. With SGW finite element method, a novel method is presented that has higher precision and faster computing speed to identify the crack location and size. 展开更多
关键词 second generation wavelet finite element fault diagnosis crack
下载PDF
STUDY ON THREE-DIMENSIONAL FINITE BODIES CONTAINING CRACKS USING THE FINITE ELEMENT METHOD OF LINES 被引量:2
6
作者 HuShaowei WangHongxia 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第1期83-94,共12页
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac... The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior. 展开更多
关键词 3D finite element method of lines. 3D bodies with cracks stress intensity factors
下载PDF
SPECIAL HIGH-ORDER BENDING CRACK TIP FINITE ELEMENT FOR THE REISSNER PLATE
7
作者 Jiang Chiping (Department of Flight Vehicle Design and Applied Mechanics, Beijing University of Aeronautics and Astronautics. Beijing, 100083, China) Liu Chuntu (Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第4期31-37,共7页
Based on the crack tip field expansion of the Reissner plate, a special high order bending crack tip element is developed, and the element stiffness matrix is given in the explicit form, which is especially convenien... Based on the crack tip field expansion of the Reissner plate, a special high order bending crack tip element is developed, and the element stiffness matrix is given in the explicit form, which is especially convenient for engineering analyses. A numerical example is presented and compared with previous results to demonstrate the efficiency and accuracy of the special element. 展开更多
关键词 Reissner theory PLATES fracture mechanics stress intensity factors finite element method bending crack tip element
下载PDF
A Finite Element Method for Cracked Components of Structures 被引量:1
8
作者 刘立名 段梦兰 +3 位作者 秦太验 刘玉标 柳春图 余建星 《海洋工程:英文版》 2003年第2期177-188,共12页
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element... In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig. 展开更多
关键词 offshore platform finite element crack damage fracture mechanics stiffness matrix COMPONENT
下载PDF
A Finite Element Study of Crack Behavior for Carbon Na-notube Reinforced Bone Cement 被引量:1
9
作者 Kaveh PourAkbar Saffar Ahmad Raeisi Najafi +1 位作者 Manssour H. Moeinzadeh Leszek J. Sudak 《World Journal of Mechanics》 2013年第5期13-21,共9页
Polymethylmethacrylate (PMMA) bone cement is a polymeric material that is widely used as a structural orthopedic material. However, it is not an ideal material for bone grafting due to its fragility. Carbon nanotubes ... Polymethylmethacrylate (PMMA) bone cement is a polymeric material that is widely used as a structural orthopedic material. However, it is not an ideal material for bone grafting due to its fragility. Carbon nanotubes (CNTs) have been introduced in order to reinforce PMMA resulting in a composite material which exhibits improved tensile properties, increased fatigue resistance and fracture toughness. This improvement is potentially due to bridging and arresting cracks as well as absorption of energy. In this study, a two-dimensional finite element model is presented for the fracture analysis of PMMA-CNT composite material. Instead of the classical single fiber model, the present work considers an ensemble of CNTs interacting with a pre-existing crack. Casca is used to produce a two dimensional mesh and the fracture analysis is performed using Franc 2D. The model is subjected to uni-axial loading in the transverse plane and the interaction between the crack and CNTs is evaluated by determining the stress intensity factor in the vicinity of the crack tips. The effects of geometric parameters of the CNTs and the material structural heterogeneity on crack propagation trajectory are investigated. Furthermore, the effects of CNT diameter, wall thickness and elastic mismatch between the matrix and the nanotubes on crack growth are studied. The results illustrate that the CNTs repel cracks during loading as they act as barriers to crack growth. As a result, the incorporation of CNTs into PMMA reduces crack growth but more importantly increases the fracture resistance of bone cement. 展开更多
关键词 BONE CEMENT CARBON NANOTUBE Finite element crack Propagation Stress INTENSITY Factor
下载PDF
Discrete Element Modeling of Asphalt Concrete Cracking Using a User-def ined Three-dimensional Micromechanical Approach 被引量:6
10
作者 陈俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1215-1221,共7页
We established a user-defined micromechanical model using discrete element method (DEM) to investigate the cracking behavior of asphalt concrete (AC). Using the "Fish" language provided in the particle flow code... We established a user-defined micromechanical model using discrete element method (DEM) to investigate the cracking behavior of asphalt concrete (AC). Using the "Fish" language provided in the particle flow code in 3-Demensions (PFC3D), the air voids and mastics in asphalt concrete were realistically built as two distinct phases. With the irregular shape of individual aggregate particles modeled using a clump of spheres of different sizes, the three-dimensional (3D) discrete element model was able to account for aggregate gradation and fraction. Laboratory uniaxial complex modulus test and indirect tensile strength test were performed to obtain input material parameters for the numerical simulation. A set of the indirect tensile test were simulated to study the cracking behavior of AC at two levels of temperature, i e, -10 ℃ and 15 ℃. The predicted results of the numerical simulation were compared with laboratory experimental measurements. Results show that the 3D DEM model is able to predict accurately the fracture pattern of different asphalt mixtures. Based on the DEM model, the effects of air void content and aggregate volumetric fraction on the cracking behavior of asphalt concrete were evaluated. 展开更多
关键词 discrete element method asphalt concrete cracking behavior three-dimensional simulation MICROMECHANICS
下载PDF
AN EFFECTIVE BOUNDARY ELEMENT METHOD FOR ANALYSIS OF CRACK PROBLEMS IN A PLANE ELASTIC PLATE
11
作者 闫相桥 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第6期814-822,共9页
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discon... A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors. 展开更多
关键词 stress intensity factor boundary element method displacement discontinuity crack-tip element
下载PDF
FINITE ELEMENT ANALYSIS OF SUBSTRATE LOCAL PLASTIC DEFORMATION INDUCED BY CRACKED THIN HARD FILM
12
作者 ZhuYouli RozniatowskiK +2 位作者 KurzydtowskiK HuangYuanlin XuBinshi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期364-367,共4页
It has been postulated that, with tensile loading conditions, micro-cracks onthin hard film act as stress concentrators enhancing plastic deformation of the substrate materialin their vicinity. Under favorable conditi... It has been postulated that, with tensile loading conditions, micro-cracks onthin hard film act as stress concentrators enhancing plastic deformation of the substrate materialin their vicinity. Under favorable conditions the localized plastic flow near the cracks may turninto macroscopic plastic strain thus affects the plasticity behaviors of the substrate. Thisphenomenon is analyzed quantitatively with finite element method with special attention focused onthe analysis and discussion of the effects of plastic work hardening rate, film thickness and crackdepth on maximum plastic strain, critical loading stress and the size of the local plasticdeformation zone. Results show that micro-cracks on thin hard film have unnegligible effects on theplasticity behaviors of the substrate material under tensile loading. 展开更多
关键词 Thin film MICRO-crack Finite element method Plastic deformation
下载PDF
NEW BOUNDARY ELEMENT METHOD FOR TORSION PROBLEMS OF CYLINDER WITH CURVILINEAR CRACKS 被引量:1
13
作者 王银邦 陆孜子 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第12期1531-1538,共8页
The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip... The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip elements and other crack linear elements, the boundary element formulas of the torsion rigidity and stress intensity factors were given. Some typical torsion problems of a cylinder involving a straight, kinked or curvilinear crack were calculated. The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas, which demonstrates the validity and applicability of the present boundary element method. 展开更多
关键词 Saint-Venant torsion curvilinear crack boundary integral equation boundary element stress intensity factor
下载PDF
COMBINED DELAUNAY TRIANGULATION AND ADAPTIVE FINITE ELEMENT METHOD FOR CRACK GROWTH ANALYSIS 被引量:5
14
作者 PramoteDECHAUMPHAI SutthisakPHONGTHANAPANICH ThanawatSRICHAROENCHAI 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2003年第2期162-171,共10页
The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which co... The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around crack tips and large elements in the other regions. The resulting stress intensity factors and simulated crack propagation behavior are used to evaluate the effectiveness of the procedure. Three sample problems of a center cracked plate, a single edge cracked plate and a compact tension specimen, are simulated and their results assessed. 展开更多
关键词 Delaunay triangulation adaptive mesh finite element method stress intensity factors crack propagation
下载PDF
Numerical simulation of plate rigid restraint cracking tests based on cohesive element model
15
作者 Shi Chu Wang Yang Luo Yu 《China Welding》 EI CAS 2016年第2期14-20,共7页
Cohesive element is developed from the Dugdal-Barenblatt model in the field of fracture mechanics. The mechanical constitutive relation of cohesive element can be artificially assumed depending on the specific applica... Cohesive element is developed from the Dugdal-Barenblatt model in the field of fracture mechanics. The mechanical constitutive relation of cohesive element can be artificially assumed depending on the specific applications. It has been successfully applied in the study of crystal plasticity/brittle fracture process and decohesion between delaminations. In this paper, tensile experiments of large steel plate with different length of pre-existing cracks are conducted. Based on commercial software ABAQUS, cohesive element is adopted to simulate the tensile tests, and appropriate parameter values are obtained by fitting displacement-force curves. Using these parameters, a numerical method is presented by applying cohesive element to thermo-elastic-plastic finite element method (TEP-FEM) to simulate plate rigid restraint cracking (PRRC) tests. By changing constitutive relation of cohesive element, dimensions of the model and welding conditions, the influence of welding restraint intensity and welding conditions on the crack propagation are discussed, respectively. Three types of welding cold cracking are simulated. Significant influence of welding cold cracking on resistant stress in welding line is captured by this numerical method. 展开更多
关键词 crack propagation cohesive element thermal-elastic-plastic finite element method plate rigid restraint cracking test
下载PDF
Element Analysis of Ceramic Coatings under Spherical Indentation with Metallic Interlayer: PartⅡRing Crack 被引量:1
16
作者 Minh-Quy LE Seock-Sam KIM 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期594-598,共5页
Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus depo... Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. The fracture mechanics of the ceramic coatings mechanisms due to occurrence of surface ring cracks extending traverse the coating thickness under spherical indentation are investigated within the framework of linear fracture mechanics. The J-integral associated to such cracks was computed. The evolution of J-integral vs the crack length and the indentation depth was studied. The effects of the interlayer, the coating and the substrate on the J-integral evolution were discussed. The results show that a suitable metallic interlayer can improve the fracture resistance of the coating systems under the same indentation conditions through reducing the J-integral. 展开更多
关键词 Finite element analysis Ceramic coatings INDENTATION INTERLAYER crack
下载PDF
BOUNDARY ELEMENT ANALYSIS OF INTERACTION BETWEEN AN ELASTIC RECTANGULAR INCLUSION AND A CRACK
17
作者 王银邦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第2期152-157,共6页
The interaction between an elastic rectangular inclusion and a kinked crack in an infinite elastic body was considered by using boundary element method.The new complex boundary integral equations were derived.By intro... The interaction between an elastic rectangular inclusion and a kinked crack in an infinite elastic body was considered by using boundary element method.The new complex boundary integral equations were derived.By introducing a complex unknown function H(t) related to the interface displacement density and traction and applying integration by parts,the traction continuous condition was satisfied automatically.Only one complex boundary integral equation was obtained on interface and involves only singularity of order l/r.To verify the validity and effectiveness of the present boundary element method,some typical examples were calculated.The obtained results show that the crack stress intensity factors decrease as the shear modulus of inclusion increases.Thus,the crack propagation is easier near a softer inclusion and the harder inclusion is helpful for crack arrest. 展开更多
关键词 kinked crack elastic rectangular inclusion boundary element stress intensity factor
下载PDF
Finite element analysis of stresses and interface crack in TBC systems
18
作者 陈晓梅 张跃 宫声凯 《中国有色金属学会会刊:英文版》 CSCD 2005年第2期457-459,共3页
Thermal barrier coatings have been used on high temperature components. Due to high stresses leading to unpredictable failure, a transient thermal-structural finite element solution was employed to analyze the stress ... Thermal barrier coatings have been used on high temperature components. Due to high stresses leading to unpredictable failure, a transient thermal-structural finite element solution was employed to analyze the stress distribution and J-integral at the interface between the bond coating and thermally growing oxide(TGO) in the EB-PVD thermal barrier coatings subjected to thermal loadings. The effects of some environmental and material parameters were studied, such as thermal convection coefficient, ceramic elastic modulus and TGO thickness. The results show that the stresses and J-integral values are impacted by these parameters. 展开更多
关键词 热障电镀 有限元法 断裂应力 J-积分 MCrAlY合金
下载PDF
SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR FICTITIOUS CRACK MODEL IN FRACTURE MECHANICS OF CONCRETE
19
作者 王承强 郑长良 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第11期1265-1270,共6页
Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the ... Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method. 展开更多
关键词 Hamiltonian system fictitious crack model semi-analytical finite element method
下载PDF
SINGULAR INTEGRAL EQUATIONS AND BOUNDARY ELEMENT METHOD OF CRACKS IN THERMALLY STRESSED PLANAR SOLIDS
20
作者 徐春晖 秦太验 华云龙 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第4期399-406,共8页
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a... Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated. 展开更多
关键词 heat transfer crack singular integral equation boundary element method stress intensity factor
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部