期刊文献+
共找到573篇文章
< 1 2 29 >
每页显示 20 50 100
A generalized cover renewal strategy for multiple crack propagation in two-dimensional numerical manifold method 被引量:1
1
作者 YU Chang-yi ZHENG Fei +1 位作者 GUO Bing-chuan LIU Qin-ya 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2367-2381,共15页
Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the t... Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers. 展开更多
关键词 numerical manifold method multiple crack propagation physical cover renewal polygonal mathematical cover
下载PDF
Numerical simulation of crack propagation by manifold method
2
作者 吕文阁 《Journal of Chongqing University》 CAS 2006年第2期71-76,共6页
In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulat... In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulated through numerical manifold method. The crack propagation is traced dynamically by modifying the neighboring connection between the crack-top and nodes within elements in the calculating process. This method has the advantages such as less modified area, easiness of programming, high realizability and so on. Then a single sharp nicked specimen is used to verified the numerical result. It is shown that the provided method is reasonable and effective. 展开更多
关键词 numerical manifold method crack propagation path independent contour integral
下载PDF
Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass 被引量:1
3
作者 Jiawei Liang Defu Tong +3 位作者 Fei Tan Xiongwei Yi Junpeng Zou Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1977-1992,共16页
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura... As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses. 展开更多
关键词 Heat conduction Fractured rock mass crack propagation Galerkin variation Numerical manifold method(NMM)
下载PDF
A new measurement method of crack propagation rate for brittle rock under THMC coupling condition 被引量:7
4
作者 Wei YI Qiu-hua RAO +1 位作者 Zhuo LI Qing-qing SHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1728-1736,共9页
A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed cou... A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering. 展开更多
关键词 crack propagation rate electrical method of conductive carbon-film thermo-hydro-mechanical-chemical coupling energy method brittle rock
下载PDF
Crack propagation simulation in brittle elastic materials by a phase field method 被引量:2
5
作者 Xingxue Lu Cheng Li +2 位作者 Ying Tie Yuliang Hou Chuanzeng Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第6期339-352,共14页
To overcome the difficulties of re-meshing and tracking the crack-tip in other computational methods for crack propagation simulations,the phase field method based on the minimum energy principle is introduced by defi... To overcome the difficulties of re-meshing and tracking the crack-tip in other computational methods for crack propagation simulations,the phase field method based on the minimum energy principle is introduced by defining a continuous phase field variable(x)∈[0,1]to characterize discontinuous cracks in brittle materials.This method can well describe the crack initiation and propagation without assuming the shape,size and orientation of the initial crack in advance.In this paper,a phase field method based on Miehe's approach[Miehe et al.,Comp.Meth.App.Mech.Eng.(2010)]is applied to simulate different crack propagation problems in twodimensional(2D),isotropic and linear elastic materials.The numerical implementation of the phase field method is realized within the framework of the finite element method(FEM).The validity,accuracy and efficiency of the present method are verified by comparing the numerical results with other reference results in literature.Several numerical examples are presented to show the effects of the loading type(tension and shear),boundary conditions,and initial crack location and orientation on the crack propagation path and force-displacement curve.Furthermore,for a single edge-cracked bi-material specimen,the influences of the loading type and the crack location on the crack propagation trajectory and force-displacement curve are also investigated and discussed.It is demonstrated that the phase field method is an efficient tool for the numerical simulation of the crack propagation problems in brittle elastic materials,and the corresponding results may have an important relevance for predicting and preventing possible crack propagations in engineering applications. 展开更多
关键词 BRITTLE FRACTURE Phase field method crack propagation FINITE ELEMENT method
下载PDF
MESHLESS METHOD FOR 2D MIXED-MODE CRACK PROPAGATION BASED ON VORONOI CELL 被引量:1
6
作者 Lou Luliang Zeng Pan (Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第3期231-239,共9页
A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are ... A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method. 展开更多
关键词 meshless method crack propagation mixed-mode crack Voronoi cell
下载PDF
Analysis of Three-dimensional Crack Propagation by Using Displacement Discontinuity Method 被引量:3
7
作者 王飞 黄醒春 《Journal of Donghua University(English Edition)》 EI CAS 2010年第6期835-840,共6页
A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the ... A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective. 展开更多
关键词 three-dimensional(3D)crack propagation displacement discontinuity method stress intensity factor(SIF) numerical simulation
下载PDF
Real-time quantitative optical method to study temperature dependence of crack propagation process in colloidal photonic crystal film
8
作者 林冬风 徐余颛 +4 位作者 石将建 张瑜 罗艳红 李冬梅 孟庆波 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期518-523,共6页
A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crac... A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF. 展开更多
关键词 colloidal photonic crystal crack propagation TEMPERATURE real-time quantitative optical method
下载PDF
Propagation and Coalescence of Blast-Induced Cracks in PMMA Material Containing an Empty Circular Hole Under Delayed Ignition Blasting Load by Using the Dynamic Caustic Method
9
作者 Zhongwen Yue Yao Song +1 位作者 Zihang Hu Yanlong Lu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期547-555,共9页
In this paper,dynamic caustic method is applied to analyze the blast-induced crack propagation and distribution of the dynamic stress field around an empty circular hole in polymethyl methacrylate(PMMA)material under ... In this paper,dynamic caustic method is applied to analyze the blast-induced crack propagation and distribution of the dynamic stress field around an empty circular hole in polymethyl methacrylate(PMMA)material under delayed ignition blasting loads.The following experimental results are obtained.(1)In directional-fracture-controlled blasting,the dynamic stress intensity factors(DSIFs)and the propagation paths of the blast-induced cracks are obviously influenced by the delayed ignition.(2) The circular hole situated between the two boreholes poses a strong guiding effect on the coelesence of the cracks,causing them to propagate towards each other when cracks are reaching the circular hole area.(3)Blast-induced cracks are not initiated preferentially because of the superimposed effect from the explosive stress waves on the cracking area.(4) By using the scanning electron microscopy(SEM)method,it is verified that the roughness of crack surfaces changes along the crack propagation paths. 展开更多
关键词 crack propagation and coalescence dynamic caustic method delayed ignition blast-induced cracks dynamic stress intensity factor(DSIF)
下载PDF
Simulation of Dynamic 3D Crack Propagation within the Material Point Method
10
作者 Y.J.Guo J.A.Nairn 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第4期389-410,共22页
This paper presents the principles and algorithms for simulation of dynamic crack propagation in elastic bodies by the material point method(MPM),from relatively simple two-dimensional cases to full three-dimensional,... This paper presents the principles and algorithms for simulation of dynamic crack propagation in elastic bodies by the material point method(MPM),from relatively simple two-dimensional cases to full three-dimensional,mixed-mode crack propagation.The paper is intended to give a summary of the latest achievements on simulation of three-dimensional dynamic crack propagation,which is essentially an unexplored area.Application of the methodology presented in this paper to several dynamic crack propagation problems has shown that the MPM is a reliable and powerful approach for simulating three-dimensional,mixed-mode crack propagation. 展开更多
关键词 Material point method (MPM) DYNAMIC FRACTURE crack propagation threedimensional cracks MIXED-MODE
下载PDF
A linearly-independent higher-order extended numerical manifold method and its application to multiple crack growth simulation 被引量:4
11
作者 Dongdong Xu Aiqing Wu Cong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1256-1263,共8页
The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts high... The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated. 展开更多
关键词 Numerical manifold method (NMM) Physical cover MULTIPLE crack propagation Linear INDEPENDENCE NODAL stress CONTINUITY
下载PDF
ANALYSIS OF ELECTRIC BOUNDARY CONDITION EFFECTS ON CRACK PROPAGATION IN PIEZOELECTRIC CERAMICS 被引量:4
12
作者 齐航 方岱宁 姚振汉 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期59-70,共12页
There are three types of cracks: impermeable crack, permeable crack and conducting crack, with different electric boundary conditions on faces of cracks in piezoelectric ceramics, which poses difficulties in the analy... There are three types of cracks: impermeable crack, permeable crack and conducting crack, with different electric boundary conditions on faces of cracks in piezoelectric ceramics, which poses difficulties in the analysis of piezoelectric fracture problems. In this paper, in contrast to our previous FEM formulation, the numerical analysis is based on the use of exact electric boundary conditions at the crack faces, thus the common assumption of electric impermeability in the FEM analysis is avoided. The crack behavior and elasto-electric fields near a crack tip in a PZT-5 piezoelectric ceramic under mechanical, electrical and coupled mechanical- electrical loads with different electric boundary conditions on crack faces are investigated. It is found that the dielectric medium between the crack faces will reduce the singularity of stress and electric displacement. Furthermore, when the permittivity of the dielectric medium in the crack gap is of the same order as that of the piezoelectric ceramic, the crack becomes a conducting crack, the applied electric field has no effect on the crack propagation. 展开更多
关键词 piezoelectric ceramic crack propagation finite element method electric boundary condition
下载PDF
A modified maximum tangential tensile stress criterion for three-dimensional crack propagation 被引量:1
13
作者 Dunfu Zhang Weishen Zhu +2 位作者 Shucai Li Bo Zhang Weidong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期62-72,共11页
The three-dimensional (3D) crack propagation is a hot issue in rock mechanics. To properly simulate 3D crack propagation, a modified maximum tangential tensile stress criterion is proposed. In this modified criterio... The three-dimensional (3D) crack propagation is a hot issue in rock mechanics. To properly simulate 3D crack propagation, a modified maximum tangential tensile stress criterion is proposed. In this modified criterion, it is supposed that cracks propagate only at crack front in the principal normal plane. The tangential tensile stress at crack front in the principal normal plane in local coordinates is employed to determine crack propagation, which is calculated through coordinate transformation from global to local coordinates. New cracks will propagate when the maximum tangential tensile stress at crack front in the principal normal plane reaches the tensile strength of rock-like materials. Compared with the previous crack propagation criteria, the modified crack propagation criterion is helpful in calculating 3D crack stress intensity factor, and can overcome the limitations of propagation step determined by individual experiences in previous studies. Finally, the 3D crack propagation process is traced by element-free Galerkin method. The numerical results agree well with the experimental ones for a frozen resin sample with prefabricated 3D cracks. 展开更多
关键词 principal normal plane three-dimensional (3D) crack propagation element-free Galerkin method rock-likematerials
下载PDF
Modeling wave propagation across rock masses using an enriched 3D numerical manifold method
14
作者 YANG YongTao LI JunFeng WU WenAn 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期835-852,共18页
The three-dimensional numerical manifold method(3DNMM) method is further enriched to simulate wave propagation across homogeneous/jointed rock masses. For the purpose of minimizing negative effects from artificial bou... The three-dimensional numerical manifold method(3DNMM) method is further enriched to simulate wave propagation across homogeneous/jointed rock masses. For the purpose of minimizing negative effects from artificial boundaries, a viscous nonreflecting boundary, which can effectively absorb the energy of a wave, is firstly adopted to enrich 3DNMM. Then, to simulate the elastic recovery property of an infinite problem domain, a viscoelastic boundary, which is developed from the viscous nonreflecting boundary, is further adopted to enrich 3DNMM. Finally, to eliminate the noise caused by scattered waves, a force input method which can input the incident wave correctly is incorporated into 3DNMM. Five typical numerical tests on P/S-wave propagation across jointed/homogeneous rock masses are conducted to validate the enriched 3DNMM. Numerical results indicate that wave propagation problems within homogeneous and jointed rock masses can be correctly and reliably modeled with the enriched 3DNMM. 展开更多
关键词 3D numerical manifold method viscous nonreflecting boundary rock masses force input method wave propagation
原文传递
The Boundary Element Method for Ordinary State-Based Peridynamics
15
作者 Xue Liang Linjuan Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2807-2834,共28页
The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic... The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic finite element method(PD-FEM),and peridynamic boundary element method(PD-BEM),have been proposed.PD-BEM,in particular,outperforms other methods by eliminating spurious boundary softening,efficiently handling infinite problems,and ensuring high computational accuracy.However,the existing PD-BEM is constructed exclusively for bond-based peridynamics(BBPD)with fixed Poisson’s ratio,limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems.In this paper,we address these limitations by introducing the boundary element method(BEM)for ordinary state-based peridynamics(OSPD-BEM).Additionally,we present a crack propagationmodel embeddedwithin the framework ofOSPD-BEM to simulate crack propagations.To validate the effectiveness of OSPD-BEM,we conduct four numerical examples:deformation under uniaxial loading,crack initiation in a double-notched specimen,wedge-splitting test,and threepoint bending test.The results demonstrate the accuracy and efficiency of OSPD-BEM,highlighting its capability to successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios.Moreover,OSPDBEMsignificantly reduces computational time and exhibits greater consistencywith experimental results compared to PD-MPM. 展开更多
关键词 Ordinary state-based peridynamics boundary element method crack propagation fracture toughness
下载PDF
CRACK PROPAGATION IN THE POWER-LAW NONLINEARVISCOELASTIC MATERIAL
16
作者 熊电元 张双寅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第11期0-0,0-0+0-0+0,共7页
An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The Creep incompressilility assumption is used Tosimulate fracture behavior of craze region. it is assumed th... An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The Creep incompressilility assumption is used Tosimulate fracture behavior of craze region. it is assumed that in the .fracture processzone near the crack tip, the cohesive stress fo acts upon the crack surfaces and resistscrack opening. Through a perturbation method i. e., by superposing the Mode-Iapplied force onto a referential uniform stress state, which has a trivial solution and gives no effect on the solution of the original problem, the nonlinear viscoelasticproblem is reduced to linear problem. For weak nonlinear materials, for which thepower-law index n=1, the expressions of stress and crack surface displacement arederived. Then, the fracture process zone local energy criterion is proposed and basedon which the formulas of crucking incubation time t. and crack slow propagationvelocity a are derired. 展开更多
关键词 nonlinear viscoelasticity creep incompressibility perturbation method crack propagation crack incubation time
下载PDF
AN EXPERIMENTAL-NUMERICAL METHOD FOR MEASURING CRACK PROPAGATING VELOCITIES UNDER STRESS WAVE LOADING
17
作者 G.Y. Sha, F.C. Jiang D. Wang, D.K. Liu, and R.T.Department of Mechanical Engineering, Harbin Engineering University, Harbin 150001, ChinaShenyang National Laboratory for Materials Science, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期556-560,共5页
An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopki... An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication. 展开更多
关键词 stress wave loading dynamic fracture crack propagating velocity experimental-numerical method
下载PDF
Stable Fatigue Crack Propagation of 16MnR Steel
18
作者 Yanwen Liu Guangyuan Jin +1 位作者 Jinjun Gao Yajie Liu 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期603-612,共10页
A research on the stable fatigue crack propagation of 16MnR steel is investigated systematically in this paper.First,control experiments of 16MnR with compact tension specimen is conducted to study the effect of R-rat... A research on the stable fatigue crack propagation of 16MnR steel is investigated systematically in this paper.First,control experiments of 16MnR with compact tension specimen is conducted to study the effect of R-ratios,specimen thickness and notch sizes.The experiments show that the fatigue crack growth(FCG)rate in stable propagation was insensitive to these factors.Then,the stress intensity factor(SIF)is computed and compared by displacement interpolation method,J integral and interaction integral method respectively.The simulation shows that optimization on the mesh density and the angle of singular element improved the computational efficiency and accuracy of SIF and the interaction integral method has an obvious advantage on stability.Finally,the FCG rate is modeled by the Jiang fatigue damage criterion and the extended finite element method(XFEM)respectively.The simulation results of FCG rate are in line with experiments data and indicate that XFEM method is more accurate than Jiang fatigue damage method. 展开更多
关键词 16MnR crack propagation stress intensity factors fatigue damage extended finite element method
下载PDF
Numerical Study of Elastic Wave Propagation Characteristics in Cracked Rock
19
作者 Kaifeng Han Ruiqi Cao 《Journal of Applied Mathematics and Physics》 2014年第6期391-396,共6页
Numerical methods can provide extremely powerful tools for analysis and design of engineering systems with complex factors that are not possible or very difficult with the use of the conventional methods. In this pape... Numerical methods can provide extremely powerful tools for analysis and design of engineering systems with complex factors that are not possible or very difficult with the use of the conventional methods. In this paper, we use the 2-D boundary element method (BEM) program to model elastic wave excited by a point explosive source propagating in cracked rocks. As an example, we consider the typical crack distributions in rocks, both models for the real crack structure are also talked about. The elastic wave propagating in rocks with aligned cracks and parallel fractures is assumed. Effects of different crack parameters, such as crack scale length and crack density are analyzed. Numerical results show that the BEM is a powerful interpretive tool for understanding the complicated wave propagation and interaction in cracked solids. 展开更多
关键词 Numerical Study ELASTIC Wave propagation CHARACTERISTICS cracked ROCK BOUNDARY ELEMENT method
下载PDF
Crack Propagation Path in Two-Directionally Graded Composites Subjected to Mixed-Mode Ⅰ+Ⅱ Loading
20
作者 Zhao Zhenbo Xu Xiwu Guo Shuxiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第3期272-285,共14页
Crack propagation path in two-directionally graded composites was investigated by the finite element method.A graded extended finite element method(XFEM)was employed to calculate displacement and stress fields in crac... Crack propagation path in two-directionally graded composites was investigated by the finite element method.A graded extended finite element method(XFEM)was employed to calculate displacement and stress fields in cracked graded structures.And a post-processing subroutine of interaction energy integral was implemented to extract the mixed-mode stress intensity factors(SIFs).The maximum hoop stress(MHS)criterion was adopted to predict crack growth direction based on the assumption of local homogenization of asymptotic crack-tip fields in graded materials.Effects of material nonhomogeneous parameters on crack propagation paths were also discussed in detail.It is shown that the present method can provide relatively accurate predictions of crack paths in two-directionally graded composites.Crack propagates in the decreasing direction of effective Young′s modulus.The shape and steepness of property gradient perpendicular to the crack surface have great influences on crack paths.Through redesigning material property reasonably,crack growth in graded material can be changed to improve mechanical behaviours of cracked structures. 展开更多
关键词 graded cracked asymptotic homogenization reasonably criterion Loading assumption traction modulus
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部