期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Analysis of dynamic stress intensity factors of thick-walled cylinder under internal impulsive pressure 被引量:3
1
作者 Aijun Chen Lianfang Liao Dingguo Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期803-809,共7页
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ... Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method. 展开更多
关键词 Thick-walled cylinder . Cracks .Dynamic stress intensity factors . Weight function methodMode shape function
下载PDF
Characterizing Dessication Cracking of a Remolded Clay (Eutric Vertisol) Using the Fractal Dimension Approach 被引量:1
2
作者 David Lomeling Mandlena C. Kenyi +3 位作者 Modi A. Lodiong Moti S. Kenyi George M. Silvestro Juma L. L. Yieb 《Open Journal of Soil Science》 2016年第4期68-80,共13页
Fractal dimension fd, was used as one of the parameters to describe dessicationcracking pattern of a remolded Black Cotton soil (Eutric Vertisol). The fractal dimension computed from filtered, thinned and skeletonized... Fractal dimension fd, was used as one of the parameters to describe dessicationcracking pattern of a remolded Black Cotton soil (Eutric Vertisol). The fractal dimension computed from filtered, thinned and skeletonized binary images of soil cracks using the Fractal3 software provided an insight into temporal variability of fd as well as its relationship with the Crack Intensity Factor (CIF) and Soil Moisture Content (SMC). The results showed that even for single crack, the fd prior to filtering and thinning were higher than after. Cracking patterns were observedfroma chosen soil sample during dessication and the corresponding relationship between fd and CIF compared and monitored. As the critical SMC decreased during drying (45% to 27%), the CIF soil increased (0.023% - 5.75%), so did the fd (1.233 to 1.7193). The fd showed a positive linear correlation with CIF at r<sup>2</sup> = 0.247 (P fd with SMC was best described using a polynomial function at r<sup>2</sup> = 0.969 (P fd was sensitive to dessication cracking and therefore on SMC changes. Visual observation of dessication cracking showed that CIF increased and attained stability after day 4 while the computed and logarithmic transformed crack area attained stability between days 7 to 10 gradually decreasing to values below 2%. The estimated crack Cover or Brightness of the digitized binary images also gave better approximation of the CIF though this was slightly higher. Our results showed that dessication cracking of the Eutric Vertisol was independent of antecedent critical SMC and was time-constrained. Further soil cracking therefore stopped once maximum CIF was attained and only widening and deepening of pre-existing cracks continued. 展开更多
关键词 Fractal Dimension FILTERING THINNING Critical SMC Dessication Crack Intensity factor
下载PDF
Analysis of effect factors on crack rotation factor
3
作者 薛河 史耀武 《China Welding》 EI CAS 1998年第2期16-22,共7页
Crack rotation factor r and plastic crack rotation factor rp are analyzed by means of simulated test using finite element methods. The results indicate that r and rp are influenced by material and geometry parameters ... Crack rotation factor r and plastic crack rotation factor rp are analyzed by means of simulated test using finite element methods. The results indicate that r and rp are influenced by material and geometry parameters in three-point bend specimen and r and rp are variable value in small scope of yield. Therefore, it has some great error that r and rp are regarded as constants in analyzing CTOD crack driving force. 展开更多
关键词 elastic-plastic fracture CTOD three-point bend finite element crack rotation factor
下载PDF
DYNAMIC STRESS INTENSITY FACTORS AROUND TWO CRACKS NEAR AN INTERFACE OF TWO DISSIMILAR ELASTIC HALF-PLANES UNDER IN-PLANE SHEAR IMPACT LOAD
4
作者 钱仁根 伊藤胜悦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第1期67-77,共11页
Transient stresses around two collinear cracks which lie in parallel with theinterface of the two dissimilar half-planes are studied in this article.The surfaces ofthe cracks are sheared suddenly. Application of the... Transient stresses around two collinear cracks which lie in parallel with theinterface of the two dissimilar half-planes are studied in this article.The surfaces ofthe cracks are sheared suddenly. Application of the Fourier and Laplace transforms technique reduces the problem to that of solving dual integrai equations.To solvethese,the differences of.the crack surface displacements are expanded in a series offunctions which are automatically zero outside of the cracks. The unknown coefficients accompanied in the series are determined by the Schmidt method. The stress intensity .factors are defined in the Laplace transform domain and these are inverted numerically in the physical space .As an example ,the dynamic stress intensity factors around two cracks in a ceramic and steel bonded composite are numerically calculated. 展开更多
关键词 Stress intensity factor. collincar cracks. impact load. compositematerials. numerical Laplace inversion fracture mechanics
下载PDF
STRESS INTENSITY FACTORS OF A PLATE WITH TWO CRACKS EMANATING FROM AN ARBITRARY HOLE
5
作者 王元汉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第8期723-732,共10页
In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculate... In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculated examples include a circular, elliptical, rectangular, or rhombic hole in a plate. The principle and procedure by the method is not only rather simple, but also has good accuracy. The SIF values calculated compare very favorably with the existing solutions. A t the same time,the method can be used far different finite plate with two cracks emanating from a hole with more complex geometrical and loading conditions. It is an effective unified approach for this kind of fracture problems. 展开更多
关键词 mode STRESS INTENSITY factorS OF A PLATE WITH TWO CRACKS EMANATING FROM AN ARBITRARY HOLE LENGTH
下载PDF
THE THREE-DIMENSIONAL STRESS INTENSITY FACTOR UNDER MOVING LOADS ON THE CRACK FACES
6
作者 Li Xiangping Liu Chuntu(Institute of Mechanics,Academia Sinica.Beijing,100080,P.R.China) 《Acta Mechanica Solida Sinica》 SCIE EI 1994年第1期54-67,共14页
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads ... The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented. 展开更多
关键词 Moving loads A half plane crack combined mode dynamic stress intensity factor
下载PDF
A CLOSED FORM SOLUTION OF STRESS INTENSITY FACTORS FOR THREE DIMENSIONAL FINITE BODIES WITH ECCENTRIC CRACKS
7
作者 Wang Qizhi, Zhang Xing and Ren BingyiBeijing University of Aeronautics and Astronautics 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期246-257,共12页
In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. Th... In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. The results of stress intensity factors can be obtained. The results provided ir this method are in nice agreement with those of the famous alternating method by which only special cases can be solved. 展开更多
关键词 FORM A CLOSED FORM SOLUTION OF STRESS INTENSITY factorS FOR THREE DIMENSIONAL FINITE BODIES WITH ECCENTRIC CRACKS
下载PDF
Determining representative elementary volume size of in-situ expansive soils subjected to drying-wetting cycles through field test 被引量:3
8
作者 CHENWei LI Guo-wei +3 位作者 HOU Yu-zhou WU Jian-tao YUAN Jun-ping Andrew Cudzo AMENUVOR 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3246-3259,共14页
Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to... Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given. 展开更多
关键词 representative elementary volume(REV) drying-wetting cycles expansive soil crack intensity factor(CIF) COHESION cracks
下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:9
9
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
下载PDF
Application of scaled boundary finite element method in static and dynamic fracture problems 被引量:2
10
作者 Zhenjun Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第3期243-256,共14页
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe... The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods. 展开更多
关键词 Scaled boundary finite element method Dynamic stress intensity factors Mixed-mode crack propagation Remeshing algorithm Linear elastic fracture mechanics
下载PDF
Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress 被引量:6
11
作者 Yongshui Kang Quansheng Liu +1 位作者 Xiaoyan Liu Shibing Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期466-476,共11页
Water-bearing rocks exposed to freezing temperature can be subjected to freezeethaw cycles leading tocrack initiation and propagation, which are the main causes of frost damage to rocks. Based on theGriffith theory of... Water-bearing rocks exposed to freezing temperature can be subjected to freezeethaw cycles leading tocrack initiation and propagation, which are the main causes of frost damage to rocks. Based on theGriffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, andcrack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation methodis proposed for the stress intensity factor (SIF) of the crack tip under non-uniformly distributed freezingpressure. The formulae for the crack/fracture propagation direction and length of the wing crack underfreezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated.In addition, the necessary conditions for different coalescence modes of cracks are studied. Using thetopology theory, a new algorithm for frost crack propagation is proposed, which has the capability todefine the crack growth path and identify and update the cracked elements. A model that incorporatesmultiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using aFISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstratedusing the new algorithm. The proposed method can be applied to rocks containing fillings such asdetritus and slurry. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Freeze-thaw action Freezing pressure Stress intensity factor(SIF) Crack propagation
下载PDF
SIF-based fracture criterion for interface cracks 被引量:3
12
作者 Xing Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期491-496,共6页
The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s^(-iε), so that K = ■ s^(-iε), s is a characteristic length and ε is the osc... The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s^(-iε), so that K = ■ s^(-iε), s is a characteristic length and ε is the oscillatory index. ■ has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with■, as Irwin(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack,it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor(SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results. 展开更多
关键词 Interface crack Stress singularity Fracture criterion Stress intensity factor
下载PDF
THE APPROXIMATE SOLUTION OF PENNY-SHAPED CRACKS PERIODICALLY DISTRIBUTED IN INFINITE ELASTIC BODY
13
作者 周建平 陆寅初 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1992年第1期61-68,共8页
The penny-shaped cracks periodically distributed in infinite elastic body are studied. The prob- lem is approximately simplified to that of a single crack embedded in finite length cylinder and the stress intensity fa... The penny-shaped cracks periodically distributed in infinite elastic body are studied. The prob- lem is approximately simplified to that of a single crack embedded in finite length cylinder and the stress intensity factor is obtained by solving a Fredholm integral equation. Numerical results are given and the effects of crack interaction on the stress intensity factor are discussed. 展开更多
关键词 stress intensity factor dual equation crack interaction factor
下载PDF
A NEW METHOD OF ANALYZING SURFACE CRACKS
14
作者 曾昭景 戴树和 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1993年第8期787-792,共6页
The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-... The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-dimension problem of the surface cracks into a quasi-one-dimension problem and can be used to analyze the surface cracked plate under various loading conditions. In this paper theoretical analyses and numerical verifications are carried out. The calculated results are reported, which indicate that the present method is efficient and can be used to analyze the surface crack problem on a personal computer. 展开更多
关键词 line spring model boundary element method surface crack stress intensity factor
下载PDF
ELECTRO-ELASTIC GREEN'S FUNCTIONS FOR APIEZOELECTRIC HALF-SPACE ANDTHEIR APPLICATION
15
作者 刘金喜 王彪 杜善义 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第11期0-0,0-0+0-0+0,共7页
In this paper, as is studied are the electro-elastic solutions for a piezoelectric halfspace subjected Io a line force, a line charge and a line dislocation, i. e.. Green sfunclions on the basis of Stroh formalism and... In this paper, as is studied are the electro-elastic solutions for a piezoelectric halfspace subjected Io a line force, a line charge and a line dislocation, i. e.. Green sfunclions on the basis of Stroh formalism and the concept of analytical continuation,explicit expressions for Green's functions are derived. As a direct application of theresults obtained, an infinite piezoelectric solid containing a semi-infinite crack isexammed. Attention iffocused on the stress and electric displacement fields of a cracktip. The stress and electric displacement intensity .factors are given explicitly. 展开更多
关键词 piezoelectric half-space Green's function semi-infinite crack stress intensity factor electric displacement intensity factor
下载PDF
Crack patterns corresponding to the residual strength plateau of ceramics subjected to thermal shock
16
作者 H.-L.Hou X.-E Wu +3 位作者 P.Yan F.Song J.Li C.-P.Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期670-674,共5页
The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm&... The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics. 展开更多
关键词 Ceramics Thermal shock Crack patterns Residual strength - Stress intensity factor
下载PDF
ANALYSIS OF COMPLEX STRESS INTENSITIES FOR CRACKED LAMINATES
17
作者 胡互让 吴承平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第2期119-132,共14页
Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity f... Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity factor. a closed-form solution for complex. Stress intensity in terms of external loading and a mode mix parameter for fairly. general composite laminates is given. Then a procedure for determining this mode mix. parameter is presented. followed by numerical results for some laminates. Small scale contact condition is expressed in terms of external loading In particular, a symmetric property of interfacial toughness curye is proven. Finally. the accuracy of failure load predicled by elininating oscllation index is discussed. and an example is presented to show the validity and limitation of β=0 approximation. 展开更多
关键词 composite materials. laminates complex stress intensity factor.energy release rate. inlerface Crack
下载PDF
Calculation of stress intensity factor in two-dimensional cracks by strain energy density factor procedure 被引量:1
18
作者 FANG Zhao LI AiQun +1 位作者 BAO HaiYing WANG Hao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期542-550,共9页
In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is p... In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip. 展开更多
关键词 stress intensity factor two-dimensional crack strain energy density factor averaged strain energy density
原文传递
Effect of three dimensional stress state on unstable fracture condition and crack opening level in a new crack growth model 被引量:7
19
作者 Fang WANG Weicheng CUI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第1期41-49,共9页
A new model for the analysis of fatigue crack growth in the metal structures was proposed. This model shows a promising capability of explaining various fatigue phenomena. The new crack growth model is further complet... A new model for the analysis of fatigue crack growth in the metal structures was proposed. This model shows a promising capability of explaining various fatigue phenomena. The new crack growth model is further completed by a continuous empirical formula for estimating the value of variable fracture toughness during crack propagation and a modified continuous equation for the crack tip stress/strain constraint factor used to calculate the stress intensity factor at the opening level. The prediction results are proved to agree well with the observed phenomena in test. 展开更多
关键词 Marine structures Crack growth rate Three dimensional stress state Fracture toughness Crack tip stress/strain constraint factor
原文传递
A simpliied fatigue assessment method for transverse illet welded joints
20
作者 Wei Shen Renjun Yan +2 位作者 Nigel Barltrop Kai Qin Feng He 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第2期198-208,共11页
Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fractur... Under the as-welded condition the fatigue crack initiation period was considered nonexistent and Linear Elastic Fracture Mechanics(LEFM) was used to calculate fatigue strength for a range of weld geometries. Fracture mechanics assessment of welded joints requires accurate solutions for stress intensity factor(SIF). However, the solutions for the SIF of complex welded joints are dificult to determine due to the complicated correction factors. Three methods for SIF prediction are discussed on illet welded specimens containing continuous or semi-elliptical surface cracks, including the traditional correction method Mk, the approximate correction method Kt, and the suggested additional crack size method(ac+ae).The new additional crack parameter ae is used to replace the stress concentration effect of weld proile Mk, which simpliies the calculation process. Experimental results are collected to support fatigue strength assessment of the additional crack size method. 展开更多
关键词 Fillet welded joints Stress intensity factor(SIF) Additional crack size(ae) Fatigue strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部