The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed dur...The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.展开更多
Accurately characterizing the mechanical responses and cracking mechanism of three-dimensional confined fractured rocks under coupled static-dynamic loading is of paramount importance for underground engineering const...Accurately characterizing the mechanical responses and cracking mechanism of three-dimensional confined fractured rocks under coupled static-dynamic loading is of paramount importance for underground engineering construction.Using a modified split Hopkinson pressure bar(SHPB)system,five groups of single-flawed specimens with the axial prestress ratio from 0 to 0.8 are tested at the strain rates in the range of 65-205 s-1under a fixed radial prestress.Our results indicate that both the dynamic strength and total strength show significant positive linear correlations with the strain rate,and the dynamic strength shows more strain rate sensitivity under higher axial prestress.The dynamic strength and corresponding failure strain decrease with increasing axial prestress,while the total strength is barely affected by the axial prestress.The dynamic elastic modulus initially increases before the axial prestress ratio reaches 0.6 and then decreases.The failure pattern of tested specimens changes from single diagonal failure to an“X”shaped conjugated failure as axial prestress increases.Furthermore,the progressive cracking processes of confined single-flawed specimens under different axial prestresses are numerically visualized by the discrete element method(DEM).Based on the displacement trend lines on both sides of cracking surface,five crack types are identified and classified in our simulation.The displacement field distributions of the DEM models reveal that the macroscopic single diagonal failure under lower axial prestress is mainly controlled by mixed tensile-shear cracks,while the“X”shaped conjugated failure under higher axial prestress is shear dominated.展开更多
To solve the engineering problem of the first tunnel lining cracking caused by the second tunnel construction of double-arch highway tunnels,a research method combining distributed optical-fibre monitoring,inversion a...To solve the engineering problem of the first tunnel lining cracking caused by the second tunnel construction of double-arch highway tunnels,a research method combining distributed optical-fibre monitoring,inversion analysis and numerical simulation that can reflect lining cracking was presented.Optical fibres were laid on opposite sides of the steel arches inside the first tunnel lining.Embedded optical-fibre monitoring was conducted continuously during the second tunnel driving.Based on the fibre-optic strain profile,the lining cracking was deduced and warned in time.The mechanical behaviour of the steel arch was investigated by the inversion analysis,which took into consideration the integrated impact of axial force and flexural moment.A two-dimensional(2D)load-structure method–based numerical model was established,considering the influence of different load distributions in each construction condition.The total strain rotating crack constitutive model was applied to reflect the cracking behaviour of concrete lining in the simulation,and the model was calibrated and verified in the laboratory.Comparative analysis between the simulated strain distribution and the distributed optical-fibre monitoring results was carried out.The deformation mode and crack distribution of the lining were analysed.The cracking mechanism was explained.Specifically,the second tunnel construction led to the loading at the top of the middle partition wall and the release of rock pressure in the first tunnel.Under these load changes,the secondary lining of the first tunnel cracked on the inner side of the top of the middle partition wall owing to tension,and compression-bending failure occurred near the right arch foot.Finally,the influence of the parameters on the lining force was analysed,and a construction optimisation scheme was proposed.展开更多
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ...Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.展开更多
Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high...Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED.展开更多
The Internet has penetrated all aspects of human society and has promoted social progress.Cyber-crimes in many forms are commonplace and are dangerous to society and national security.Cybersecurity has become a major ...The Internet has penetrated all aspects of human society and has promoted social progress.Cyber-crimes in many forms are commonplace and are dangerous to society and national security.Cybersecurity has become a major concern for citizens and governments.The Internet functions and software applications play a vital role in cybersecurity research and practice.Most of the cyber-attacks are based on exploits in system or application software.It is of utmost urgency to investigate software security problems.The demand for Wi-Fi applications is proliferating but the security problem is growing,requiring an optimal solution from researchers.To overcome the shortcomings of the wired equivalent privacy(WEP)algorithm,the existing literature proposed security schemes forWi-Fi protected access(WPA)/WPA2.However,in practical applications,the WPA/WPA2 scheme still has some weaknesses that attackers exploit.To destroy a WPA/WPA2 security,it is necessary to get a PSK pre-shared key in pre-shared key mode,or an MSK master session key in the authentication mode.Brute-force cracking attacks can get a phase-shift keying(PSK)or a minimum shift keying(MSK).In real-world applications,many wireless local area networks(LANs)use the pre-shared key mode.Therefore,brute-force cracking of WPA/WPA2-PSK is important in that context.This article proposes a new mechanism to crack theWi-Fi password using a graphical processing unit(GPU)and enhances the efficiency through parallel computing of multiple GPU chips.Experimental results show that the proposed algorithm is effective and provides a procedure to enhance the security of Wi-Fi networks.展开更多
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig...The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.展开更多
Textile reinforced concrete (TRC) is especially suitable for the thin-walled and light-weight structural elements with a high load-bearing capacity. For this thin element, the concrete cover thickness is an importan...Textile reinforced concrete (TRC) is especially suitable for the thin-walled and light-weight structural elements with a high load-bearing capacity. For this thin element, the concrete cover thickness is an important factor in affecting the mechanical and anti-crack performance. Therefore, the influences of the surface treatment of the textile and mixing polypropylene fiber into the concrete on the properties of the components with different cover thickness were experimentally studied with four-point bending tests. The experimental results show that for the components with the same cover thickness, sticking sand on epoxy resin-impregnated textile and adding short fiber into the concrete are helpful to improve their mechanical performance. The 2-3 mm cover thickness is enough to meet the anchorage requirements of the reinforcement fiber and the component has good crack pattern and mechanical behavior at this condition. Comparison between the calculated and the experimental Values of flexural capacity reveals satisfactory agreement. Finally, based on the calculation model of the crack spacing of reinforced concrete structures, the crack extension of this thin-wall component was qualitatively analyzed and the same results with the experimental were obtained.展开更多
When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We deve...When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.展开更多
Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implant...Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants,it is essential to study the failure mechanisms associated with nanoindentation,such as fracture,delamination,and chipping.The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy,depending on indenter shape,substrate type,crystallographic properties,pre-existing flaws,internal microcracks,and pre-strain.Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process,showing that the fracture morphology is affected by the interaction of different cracking events.The interfacial fracture energy,toughness,and residual stress are calculated using existing models with minor adjustments,and it is found that increasing the indenter sharpness improves the shear stress distribution,making the coating more prone to separation.Depending on the prevailing type of stress,the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening.Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction,and because of its stronger induced plasticity than that of a Berkovich indenter tip,a sharper cube-corner tip produces more resistance.展开更多
According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity....According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.展开更多
Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation ...Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA.展开更多
In this work,the crack growth behaviours of high strength low alloy(HSLA)steel E690 with three crystallographic orientations(the rolling direction,normal direction,and transverse direction)were investigated and compar...In this work,the crack growth behaviours of high strength low alloy(HSLA)steel E690 with three crystallographic orientations(the rolling direction,normal direction,and transverse direction)were investigated and compared from the view of the mechano-electrochemical ef-fect at the crack tip.The results show that the crack growth of the HSLA steel is controlled by the corrosion fracture at the crack tip.The vari-ation of crystallographic orientation in E690 steel plate has no influence on the crack tip electrochemical reaction and crack growth mechanism,but changes the crack growth rate.When the stress loading direction is parallel to the rolling direction and the fracture layer is parallel to the transverse-normal plane,the crack growth rate is the slowest with a value of 0.0185 mm·h^(-1).When the load direction and the fracture layer are parallel to the normal direction and the rolling-transverse plane,respectively,the crack growth rate is the highest with a value of 0.0309 mm·h^(-1).This phenomenon is ascribed to the different microstructural and mechanical properties in the rolling direction,normal direction,and transverse direction of E690 steel plate.展开更多
In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and ...In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and blank holder force(BHF) on formability was quantified using Taguchi design, analysis of variance(ANOVA) and mathematical statistics. The finite element(FE) model has been established in software Pamstamp for simulation and analysis of their effects on the minimum thickness and thickness variation of the hot-stamped component. The major factors influencing the minimum thickness of the hot-stamped part has been found to be BHF and friction coefficient with influence significance of 35.3% and 34.88%, respectively. Additionally, punch velocity and BHF affect the thickness deviation significantly with influence significance of 40.43% and 35.42%, respectively. Furthermore, a serious thinning occurs on the punch corner region of the hot-stamped cup when the BHF is larger than 2.4 kN. The thickness deviation of the hotformed cup has been found to be firstly decreased and then increased with the increase of punch velocity. Low friction coefficient between punch and blank led to crack at bottom centre of the cup. Moreover, different type, phenomenon and mechanism of defects occurring during hot stamping process, such as crack and wrinkling, were discussed. The crack mode was dimple-dominated ductile fracture, which was induced by micro-void nucleation, growth and coalescence.展开更多
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce...Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.展开更多
Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a diffic...Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping. In this paper, we study a possible fracture mechanism of soft gels under uni-axial compression. We show that the surfaces of a pre-existing crack, oriented parallel to the loading axis, can buckle at a critical compressive stress. This buckling instability can open the crack surfaces and cre- ate highly concentrated stress fields near the crack tip, which can lead to crack growth. We show that the onset of crack buckling can be deduced by a dimensional argument com- bined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space. The critical compression for buckling was verified for a neo- Hookean material model using finite element simulations.展开更多
Based on the crack tip structure a new model of ductile -brittle transition was proposed. Using this new model we calculated the dependence of the transition temperature-strain rate over a wide range of strain rate. F...Based on the crack tip structure a new model of ductile -brittle transition was proposed. Using this new model we calculated the dependence of the transition temperature-strain rate over a wide range of strain rate. Finally the significance of this new model is discussed in detail.展开更多
Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials ...Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials in vibration-assisted grinding are not well understood.In order to elucidate the mechanism of abrasive scratching during vibration-assisted grinding,a kinematic model of vibration scratching was developed.The influence of process parameters on the evolution of vibration scratches to indentation or straight scratches is revealed by displacement metrics and velocity metrics.Indentation,scratch and vibration scratch experiments were performed on quartz glass,and the results showed that the vibration scratch cracks are a combination of indentation cracks and scratch cracks.Vibration scratch cracks change from indentation cracks to scratch cracks as the indenter moves from the entrance to the exit of the workpiece or as the vibration frequency changes from high to low.A vertical vibration scratch stress field model is established for the first time,which reveals that the maximum principal stress and tensile stress distribution is the fundamental cause for inducing the transformation of the vibration scratch cracking system.This model provides a theoretical basis for understanding of the mechanism of material damage and crack propagation during vibration-assisted grinding.展开更多
In recent years, many useful experimental results on the cracking behaviors of fractured rocks have been obtainedvia uniaxial, biaxial, triaxial, and Split Hopkinson Pressure Bar (SHPB) tests. In this paper, the influ...In recent years, many useful experimental results on the cracking behaviors of fractured rocks have been obtainedvia uniaxial, biaxial, triaxial, and Split Hopkinson Pressure Bar (SHPB) tests. In this paper, the influence of theinclination angle of flaws, number of flaws, and patterns of cracks on the mechanical properties during the failureprocess under static loading and dynamic loading conditions is introduced and reviewed. The results show thatthe presence of cracks can decrease the strengths of precracked specimens, and the inclination angles, numbers,and crack patterns of pre-existing flaws can change the mechanical properties and cracking behaviors of precracked specimens. Under static loading, the closer the inclination angle is to 90, the greater the strength, theelastic modulus, and the peak strain of the precracked specimen. However, under dynamic loading, the influenceof the inclination angle varies, and the strength can increase or decrease, possibly in a V-shaped manner. Thischange can be determined by multiple factors, such as the loading path, the materials of the precracked specimen,and the number of pre-existing cracks. Under dynamic loading, the precracked specimen usually exhibits an Xshaped conjugated failure. Additionally, some problems in the study of the cracking behaviors of fractured rocksand related future research are described and presented, and corresponding suggestions and solutions are given.In particular, excavation in deep rock engineering, support of the rock surrounding the tunnel, and mining engineering have important scientific and engineering significance.展开更多
The aim of this paper is to investigate the damage cracking characteristics of rock and soil aggregate(RSA)by X-ray computed tomography(CT)under uniaxial compressive loading.The mean CT value for the region of interes...The aim of this paper is to investigate the damage cracking characteristics of rock and soil aggregate(RSA)by X-ray computed tomography(CT)under uniaxial compressive loading.The mean CT value for the region of interest(ROI)is used to analyze the cracking characteristics.Also,the mathematical morphology method based on the image threshold segmentation is used to obtain characteristic parameters of cracks to describe the cracking evolution of RSA.Results show that the elastic mismatch between rock blocks and soil matrix is the primary reason for RSA cracking.The mean CT value for the RSA specimen,rock block inclusions,and their adjacent soil regions decreases with the increasing stress level.However,it is more sensitive for block inclusions than soil regions.Using the image segmentation method,length,area and mean width of cracks obey to power function distribution.Crack statistical characteristics are closely related to the rock block’s distribution and morphology.These results may be useful to reveal the mesoscopic cracking mechanism,establish meso-damage evolution equation,and constitutive relation for RSA.展开更多
基金Project(50974016)supported by the National Natural Science Foundation of China。
文摘The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52039007and 52009086)the Youth Science and Technology Innovation Team of Sichuan Province,China(Grant No.2020JDTD0001)。
文摘Accurately characterizing the mechanical responses and cracking mechanism of three-dimensional confined fractured rocks under coupled static-dynamic loading is of paramount importance for underground engineering construction.Using a modified split Hopkinson pressure bar(SHPB)system,five groups of single-flawed specimens with the axial prestress ratio from 0 to 0.8 are tested at the strain rates in the range of 65-205 s-1under a fixed radial prestress.Our results indicate that both the dynamic strength and total strength show significant positive linear correlations with the strain rate,and the dynamic strength shows more strain rate sensitivity under higher axial prestress.The dynamic strength and corresponding failure strain decrease with increasing axial prestress,while the total strength is barely affected by the axial prestress.The dynamic elastic modulus initially increases before the axial prestress ratio reaches 0.6 and then decreases.The failure pattern of tested specimens changes from single diagonal failure to an“X”shaped conjugated failure as axial prestress increases.Furthermore,the progressive cracking processes of confined single-flawed specimens under different axial prestresses are numerically visualized by the discrete element method(DEM).Based on the displacement trend lines on both sides of cracking surface,five crack types are identified and classified in our simulation.The displacement field distributions of the DEM models reveal that the macroscopic single diagonal failure under lower axial prestress is mainly controlled by mixed tensile-shear cracks,while the“X”shaped conjugated failure under higher axial prestress is shear dominated.
基金funded by the National Natural Science Foundation of China(Grant No.041307087)the Construction Technology Risk and Optimization Analysis on the Xiangli Expressway Special Structure Tunnels Project,China(Yunjiaoke[2018]No.36).
文摘To solve the engineering problem of the first tunnel lining cracking caused by the second tunnel construction of double-arch highway tunnels,a research method combining distributed optical-fibre monitoring,inversion analysis and numerical simulation that can reflect lining cracking was presented.Optical fibres were laid on opposite sides of the steel arches inside the first tunnel lining.Embedded optical-fibre monitoring was conducted continuously during the second tunnel driving.Based on the fibre-optic strain profile,the lining cracking was deduced and warned in time.The mechanical behaviour of the steel arch was investigated by the inversion analysis,which took into consideration the integrated impact of axial force and flexural moment.A two-dimensional(2D)load-structure method–based numerical model was established,considering the influence of different load distributions in each construction condition.The total strain rotating crack constitutive model was applied to reflect the cracking behaviour of concrete lining in the simulation,and the model was calibrated and verified in the laboratory.Comparative analysis between the simulated strain distribution and the distributed optical-fibre monitoring results was carried out.The deformation mode and crack distribution of the lining were analysed.The cracking mechanism was explained.Specifically,the second tunnel construction led to the loading at the top of the middle partition wall and the release of rock pressure in the first tunnel.Under these load changes,the secondary lining of the first tunnel cracked on the inner side of the top of the middle partition wall owing to tension,and compression-bending failure occurred near the right arch foot.Finally,the influence of the parameters on the lining force was analysed,and a construction optimisation scheme was proposed.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
基金supported by National Natural Science Founda-tion of China(Grant.Nos.51805070,51790172,52175291)Funda-mental Research Funds for the Central Universities of China(Grant.Nos.DUT22YG210,DUT22LAB117)+1 种基金Science Center for Gas Turbine Project of China(Grant.No.P2022-B-IV-012-001)Shenzhen Sci-ence and Technology Innovation Commission of China(Grant.No.JCYJ20210324115413036).
文摘Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED.
文摘The Internet has penetrated all aspects of human society and has promoted social progress.Cyber-crimes in many forms are commonplace and are dangerous to society and national security.Cybersecurity has become a major concern for citizens and governments.The Internet functions and software applications play a vital role in cybersecurity research and practice.Most of the cyber-attacks are based on exploits in system or application software.It is of utmost urgency to investigate software security problems.The demand for Wi-Fi applications is proliferating but the security problem is growing,requiring an optimal solution from researchers.To overcome the shortcomings of the wired equivalent privacy(WEP)algorithm,the existing literature proposed security schemes forWi-Fi protected access(WPA)/WPA2.However,in practical applications,the WPA/WPA2 scheme still has some weaknesses that attackers exploit.To destroy a WPA/WPA2 security,it is necessary to get a PSK pre-shared key in pre-shared key mode,or an MSK master session key in the authentication mode.Brute-force cracking attacks can get a phase-shift keying(PSK)or a minimum shift keying(MSK).In real-world applications,many wireless local area networks(LANs)use the pre-shared key mode.Therefore,brute-force cracking of WPA/WPA2-PSK is important in that context.This article proposes a new mechanism to crack theWi-Fi password using a graphical processing unit(GPU)and enhances the efficiency through parallel computing of multiple GPU chips.Experimental results show that the proposed algorithm is effective and provides a procedure to enhance the security of Wi-Fi networks.
基金This work was supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the National Natural Science Foundation of China(No.91860131and No.52074157)+2 种基金Guangdong Provincial Department of Science and Technology,Key-Area Research and Development Program of Guangdong Province(No.2020B090923002)the National Key Research and Development Program of China(No.2017YFB0702901)the Shenzhen Science and Technology Innovation Commission(No.JCYJ20170817111811303,No.KQTD20170328154443162and No.ZDSYS201703031748354).
文摘The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.
基金Supported by the National Natural Science Foundation of China(No.51108451)the Natural Science Foundation of Jiangsu Province of China(No.BK2011220)+2 种基金the Fundamental Research Funds for the Central Universities of China(Nos.2010QNA45, 2011FZA4017)Postdoctoral Science Foundation of China(No.2012M511817)Postdoctoral Science Foundation of Jiangsu Province(No.1102082C)
文摘Textile reinforced concrete (TRC) is especially suitable for the thin-walled and light-weight structural elements with a high load-bearing capacity. For this thin element, the concrete cover thickness is an important factor in affecting the mechanical and anti-crack performance. Therefore, the influences of the surface treatment of the textile and mixing polypropylene fiber into the concrete on the properties of the components with different cover thickness were experimentally studied with four-point bending tests. The experimental results show that for the components with the same cover thickness, sticking sand on epoxy resin-impregnated textile and adding short fiber into the concrete are helpful to improve their mechanical performance. The 2-3 mm cover thickness is enough to meet the anchorage requirements of the reinforcement fiber and the component has good crack pattern and mechanical behavior at this condition. Comparison between the calculated and the experimental Values of flexural capacity reveals satisfactory agreement. Finally, based on the calculation model of the crack spacing of reinforced concrete structures, the crack extension of this thin-wall component was qualitatively analyzed and the same results with the experimental were obtained.
基金supported by the State Key Laboratory Open Fund(No.HKLBEF202004)the Natural Science Foundation of Jiangsu Province(No.BK20201313)+2 种基金the Key Program of National Natural Science Foundation of China(No.51934007)the Major Scientific and Technological Innovation Program in Shandong Province(No.2019JZZY020505)the National Key Research and Development Program of China(No.2022YFC3004700)。
文摘When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.
文摘Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants,it is essential to study the failure mechanisms associated with nanoindentation,such as fracture,delamination,and chipping.The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy,depending on indenter shape,substrate type,crystallographic properties,pre-existing flaws,internal microcracks,and pre-strain.Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process,showing that the fracture morphology is affected by the interaction of different cracking events.The interfacial fracture energy,toughness,and residual stress are calculated using existing models with minor adjustments,and it is found that increasing the indenter sharpness improves the shear stress distribution,making the coating more prone to separation.Depending on the prevailing type of stress,the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening.Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction,and because of its stronger induced plasticity than that of a Berkovich indenter tip,a sharper cube-corner tip produces more resistance.
基金supported by the National Natural Science Foundation of China(No.51074004)the Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control of Shandong University of Science and Technology of China(No.MDPC2012KF06)+1 种基金the Natural Science Foundation of Anhui Province of China(No.11040606M102)Young Teachers Science Foundation of Anhui University of Science&Technology of China(No.2012QNZ14)
文摘According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.
基金supported by the National Natural Science Foundation of China (Nos. 12102280, 12172238, 11832007, 12022208, 12072212, and 52003181)the Science & Technology Support Program of Sichuan Province (Nos. 2020YJ0230, and 2021YJ0555)the Fundamental Research Funds for the Central Universities of China (No.2021SCU12129)
文摘Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA.
基金This study was financially supported by the China Postdoctoral Science Foundation(No.2021M693706)Independent research project of State Key Laboratory of Mechanical Transmission of China(No.SKLMT-ZZKT-2021M10)the National Environmental Corrosion Platform of China(No.NECP).
文摘In this work,the crack growth behaviours of high strength low alloy(HSLA)steel E690 with three crystallographic orientations(the rolling direction,normal direction,and transverse direction)were investigated and compared from the view of the mechano-electrochemical ef-fect at the crack tip.The results show that the crack growth of the HSLA steel is controlled by the corrosion fracture at the crack tip.The vari-ation of crystallographic orientation in E690 steel plate has no influence on the crack tip electrochemical reaction and crack growth mechanism,but changes the crack growth rate.When the stress loading direction is parallel to the rolling direction and the fracture layer is parallel to the transverse-normal plane,the crack growth rate is the slowest with a value of 0.0185 mm·h^(-1).When the load direction and the fracture layer are parallel to the normal direction and the rolling-transverse plane,respectively,the crack growth rate is the highest with a value of 0.0309 mm·h^(-1).This phenomenon is ascribed to the different microstructural and mechanical properties in the rolling direction,normal direction,and transverse direction of E690 steel plate.
文摘In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and blank holder force(BHF) on formability was quantified using Taguchi design, analysis of variance(ANOVA) and mathematical statistics. The finite element(FE) model has been established in software Pamstamp for simulation and analysis of their effects on the minimum thickness and thickness variation of the hot-stamped component. The major factors influencing the minimum thickness of the hot-stamped part has been found to be BHF and friction coefficient with influence significance of 35.3% and 34.88%, respectively. Additionally, punch velocity and BHF affect the thickness deviation significantly with influence significance of 40.43% and 35.42%, respectively. Furthermore, a serious thinning occurs on the punch corner region of the hot-stamped cup when the BHF is larger than 2.4 kN. The thickness deviation of the hotformed cup has been found to be firstly decreased and then increased with the increase of punch velocity. Low friction coefficient between punch and blank led to crack at bottom centre of the cup. Moreover, different type, phenomenon and mechanism of defects occurring during hot stamping process, such as crack and wrinkling, were discussed. The crack mode was dimple-dominated ductile fracture, which was induced by micro-void nucleation, growth and coalescence.
基金supported by the National Natural Science Foundation of China (Grant 51179189)the National Basic Research 973 Program of China (Grant 2013CB036003)+2 种基金the Program for New Century Excellent Talents in University (Grant NCET-120961)Outstanding Innovation Team Project in China University of Mining and Technology (Grant 2014QN002)the Fundamental Research Funds for the Central Universities (Grants 2014YC10 and 2014XT03)
文摘Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.
基金supported by the Materials and Surface Engineering Program,CMMI,National Science Foundation(CMMI-0900586)
文摘Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping. In this paper, we study a possible fracture mechanism of soft gels under uni-axial compression. We show that the surfaces of a pre-existing crack, oriented parallel to the loading axis, can buckle at a critical compressive stress. This buckling instability can open the crack surfaces and cre- ate highly concentrated stress fields near the crack tip, which can lead to crack growth. We show that the onset of crack buckling can be deduced by a dimensional argument com- bined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space. The critical compression for buckling was verified for a neo- Hookean material model using finite element simulations.
文摘Based on the crack tip structure a new model of ductile -brittle transition was proposed. Using this new model we calculated the dependence of the transition temperature-strain rate over a wide range of strain rate. Finally the significance of this new model is discussed in detail.
基金co-supported by the National Natural Science Foundation of China(Nos.52275458,and 52275207)the Natural Science Foundation of Tianjin(No.22JCZDJC00050).
文摘Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials in vibration-assisted grinding are not well understood.In order to elucidate the mechanism of abrasive scratching during vibration-assisted grinding,a kinematic model of vibration scratching was developed.The influence of process parameters on the evolution of vibration scratches to indentation or straight scratches is revealed by displacement metrics and velocity metrics.Indentation,scratch and vibration scratch experiments were performed on quartz glass,and the results showed that the vibration scratch cracks are a combination of indentation cracks and scratch cracks.Vibration scratch cracks change from indentation cracks to scratch cracks as the indenter moves from the entrance to the exit of the workpiece or as the vibration frequency changes from high to low.A vertical vibration scratch stress field model is established for the first time,which reveals that the maximum principal stress and tensile stress distribution is the fundamental cause for inducing the transformation of the vibration scratch cracking system.This model provides a theoretical basis for understanding of the mechanism of material damage and crack propagation during vibration-assisted grinding.
文摘In recent years, many useful experimental results on the cracking behaviors of fractured rocks have been obtainedvia uniaxial, biaxial, triaxial, and Split Hopkinson Pressure Bar (SHPB) tests. In this paper, the influence of theinclination angle of flaws, number of flaws, and patterns of cracks on the mechanical properties during the failureprocess under static loading and dynamic loading conditions is introduced and reviewed. The results show thatthe presence of cracks can decrease the strengths of precracked specimens, and the inclination angles, numbers,and crack patterns of pre-existing flaws can change the mechanical properties and cracking behaviors of precracked specimens. Under static loading, the closer the inclination angle is to 90, the greater the strength, theelastic modulus, and the peak strain of the precracked specimen. However, under dynamic loading, the influenceof the inclination angle varies, and the strength can increase or decrease, possibly in a V-shaped manner. Thischange can be determined by multiple factors, such as the loading path, the materials of the precracked specimen,and the number of pre-existing cracks. Under dynamic loading, the precracked specimen usually exhibits an Xshaped conjugated failure. Additionally, some problems in the study of the cracking behaviors of fractured rocksand related future research are described and presented, and corresponding suggestions and solutions are given.In particular, excavation in deep rock engineering, support of the rock surrounding the tunnel, and mining engineering have important scientific and engineering significance.
基金supported by the National Natural Science Foundation of China(Grants Nos.41227901,41027001,and 41027001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB10030000,XDB10030300 and XDB10050400)
文摘The aim of this paper is to investigate the damage cracking characteristics of rock and soil aggregate(RSA)by X-ray computed tomography(CT)under uniaxial compressive loading.The mean CT value for the region of interest(ROI)is used to analyze the cracking characteristics.Also,the mathematical morphology method based on the image threshold segmentation is used to obtain characteristic parameters of cracks to describe the cracking evolution of RSA.Results show that the elastic mismatch between rock blocks and soil matrix is the primary reason for RSA cracking.The mean CT value for the RSA specimen,rock block inclusions,and their adjacent soil regions decreases with the increasing stress level.However,it is more sensitive for block inclusions than soil regions.Using the image segmentation method,length,area and mean width of cracks obey to power function distribution.Crack statistical characteristics are closely related to the rock block’s distribution and morphology.These results may be useful to reveal the mesoscopic cracking mechanism,establish meso-damage evolution equation,and constitutive relation for RSA.