The strain energy density ratio criterion for predicting cracking direction in composite materials is proposed. The Tsai-Hill criterion and Norris criterion of composite materials are extended to predict the cracking ...The strain energy density ratio criterion for predicting cracking direction in composite materials is proposed. The Tsai-Hill criterion and Norris criterion of composite materials are extended to predict the cracking direction in composites. The three criteria are used to analyse the crack propagation problem of the unidirectional fibre composite sheet with various fibre directions. The predicted results are compared with those of the existing normal stress ratio criterion and strain energy density criterion.展开更多
Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very w...Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very well,and can be regarded as a solid panel.The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play.Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.展开更多
The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic mater...The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor.展开更多
In this paper,a semi-analytical method for the forced vibration analysis of cracked laminated composite beam(CLCB)is investigated.One computational model is formulated by Timoshenko beam theory and its dynamic solutio...In this paper,a semi-analytical method for the forced vibration analysis of cracked laminated composite beam(CLCB)is investigated.One computational model is formulated by Timoshenko beam theory and its dynamic solution is solved using the Jacobi-Ritz method.The boundary conditions(BCs)at both ends of the CLCB are generalized by the application of artificial elastic springs,the CLCB is separated into two elements along the crack,the flexibility coefficient of fracture theory is used to model the essential continuous condition of the connective interface.All the allowable displacement functions used to analyze dynamic characteristics of CLCB are expressed by classical Jacobi orthogonal polynomials in a more general form.The accuracy of the proposed method is verified through the compare with results of the finite element method(software ABAQUS is used in this paper).On this basis,the parametric study for dynamic analysis characteristics of CLCB is performed to provide reference datum for engineers.展开更多
文摘The strain energy density ratio criterion for predicting cracking direction in composite materials is proposed. The Tsai-Hill criterion and Norris criterion of composite materials are extended to predict the cracking direction in composites. The three criteria are used to analyse the crack propagation problem of the unidirectional fibre composite sheet with various fibre directions. The predicted results are compared with those of the existing normal stress ratio criterion and strain energy density criterion.
基金Project(50948036)supported by the National Natural Science Foundation of ChinaProject(2012H0028)supported by Key Scientific and Technological Planning Project of Fujian Province,China+2 种基金Projects(2013J01192,2013J01196)supported by Natural Science Foundation Planning Project of Fujian Province,ChinaProject(2013Z37)supported by Key Scientific and Technological Planning Project of Quanzhou City,ChinaProject(2014KJTD05)supported by Program for Scientific and Technological Innovation Team and Leading Talent of Huaqiao University,China
文摘Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan.The analysis results show that this kind of composite wall panel works very well,and can be regarded as a solid panel.The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play.Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.
文摘The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor.
文摘In this paper,a semi-analytical method for the forced vibration analysis of cracked laminated composite beam(CLCB)is investigated.One computational model is formulated by Timoshenko beam theory and its dynamic solution is solved using the Jacobi-Ritz method.The boundary conditions(BCs)at both ends of the CLCB are generalized by the application of artificial elastic springs,the CLCB is separated into two elements along the crack,the flexibility coefficient of fracture theory is used to model the essential continuous condition of the connective interface.All the allowable displacement functions used to analyze dynamic characteristics of CLCB are expressed by classical Jacobi orthogonal polynomials in a more general form.The accuracy of the proposed method is verified through the compare with results of the finite element method(software ABAQUS is used in this paper).On this basis,the parametric study for dynamic analysis characteristics of CLCB is performed to provide reference datum for engineers.